

ButterflyGyro

STIM202 Multi-Axis Gyro Module

1 FEATURES

- Excellent performance in vibration and shock environments
- 1, 2 or 3 axes offered in same package
 Electronically calibrated axis alignment
- Single-crystal silicon technology
- Low bias drift
- o Low noise
- o Standard high-level RS422 interface
- Fully configurable:
 - o 5 different sampling rates available
 - 5 different bandwidths available
 - LP filter -3dB frequency can be set individually for each axis
 - RS422 protocol, bit rate and line termination
 - Selectable output unit: angular rate [deg/s] or incremental angle [deg]
- Excellent environmental robustness
- o Miniature package
- Continuous self-diagnostics

2 GENERAL DESCRIPTION

STIM202 is a cluster of 1, 2 or 3 high accuracy MEMSbased gyros in a miniature package. Any configuration of axes can be provided. Each axis is factory-calibrated for bias, sensitivity and compensated for temperature effects to provide high-accuracy measurements in the temperature range -40°C to +85°C. The unit runs off a single +5V supply.

(Actual size)

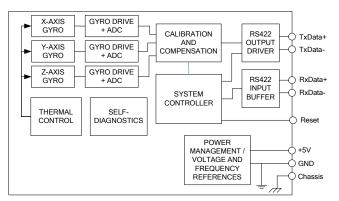


Figure 2-1: STIM202 FUNCTION BLOCK DIAGRAM

STIM202 communicates via a standard high-level RS422 interface. The use of a 32-bit RISC ARM microcontroller provides flexibility in the configuration, like choice of output unit, sampling frequency, LP filter -3dB frequency and RS422 bit-rate and protocol parameters. All configurable parameters can be defined when ordering or set by customer.

When STIM202 is powered up, it will perform an internal system check and synchronise the gyros. As an acknowledgement of the complete power-up sequence, it will provide special datagrams containing data, like part number, serial number, number of active axis and configuration parameters as mentioned above. STIM202 will then automatically proceed to provide measurement data. Hence the simplicity of use is high: just connect power and STIM202 will provide accurate gyro measurements over the RS422 interface.

The measurement data is transmitted as packages of data on a fixed format (datagram) at intervals given by the sampling frequency. The datagram is in binary coded format in order to have an efficient transfer of data. In addition to the measurement data itself, the datagram contains an identifier, a status byte and a CRC (Cyclic Redundancy Check) byte to provide high degree of fault detection in the transmissions. The status byte will flag any detected errors in the system.

For more advanced users, the gyro may be put in Service Mode. In this mode all the configuration parameters can be intermediately or permanently changed by overwriting the current settings in the flash memory. In Service Mode the commands and responses are in a human readable format; to enable the use of terminal-type software during typical product integration. Service Mode also provides the ability to perform single measurements, perform diagnostics and obtain a higher detail level of detected errors reported in the status byte.

Sensonor Technologies AS Phone: +47 3303 5000 - Fax: +47 3303 5005 sales@sensonor.no www.sensonor.com

тм

TABLE OF CONTENTS 3

1 FEATURES	1
2 GENERAL DESCRIPTION	
3 TABLE OF CONTENTS	
4 ABBREVIATIONS USED IN DOCUMENT	
5 SPECIFICATIONS	
5.1 TYPICAL PERFORMANCE CHARACTERISTICS	
5.1.1 Allan-Variance	
5.1.2 Initial bias drift	
5.1.3 Non-Linearity	
5.1.4 Low-pass filter characteristics	
5.2 Configurable parameters	
5.3 Datagram specifications	
5.4 Status byte 6 ABSOLUTE MAXIMUM RATINGS	
6 ABSOLUTE MAXIMUM RATINGS 7 MECHANICAL	
7.1 Mechanical dimensions	
7.2 Pin configuration	
7.3 Definition of axes	
8 BASIC OPERATION	
8.1 Reset	
8.2 Operating modes	
8.2.1 Init Mode	
8.2.2 Normal Mode	
8.2.3 Service Mode	
8.3 Self diagnostics	
9 COMMANDS IN NORMAL MODE	
9.1 N (PART NUMBER DATAGRAM) command	
9.2 I (SERIAL NUMBER DATAGRAM) command	
9.3 C (CONFIGURATION DATAGRAM) command	
9.4 R (RESET) command	
9.5 SERVICEMODE command	
10 COMMANDS IN SERVICE MODE	
10.1 i (INFORMATION) command 10.2 a (SINGLE-SHOT MEASUREMENT) command	
10.2 a (SINGLE-SHOT MEASUREMENT) command 10.3 c (DIAGNOSTIC) command	
10.4 d (DATAGRAM FORMAT) command	
10.5 t (TRANSMISSION PARAMETERS) command	
10.6 r (LINE TERMINATION) command	
10.7 u (OUTPUT UNIT) command	
10.8 f (LP FILTER -3dB FREQUENCY) command	
10.9 m (SAMPLING FREQUENCY) command	
10.10 s (SAVE) command	
10.11 x (EXIT) command	35
10.12 z (RESTORE TO FACTORY SETTINGS) command	
10.13 ? (HELP) command	37
11 MARKING	
12 PART NUMBER / ORDERING INFORMATION	40

ABBREVIATIONS USED IN DOCUMENT 4

ABBREVIATION	FULL NAME
tbd	to be defined
LSB	Least Significant Byte
MSB	Most Significant Byte
lsb	Least significant bit
LP filter	Low-Pass filter
CIC-filter	Cascaded Integrator-Comb filter

5 SPECIFICATIONS

Table 5-1: Operating conditions

Parameter	Conditions	Min	Nom	Max	Unit	Note
INPUT RANGE			±400		°/s	
POWER SUPPLY		4.5	5.0	5.5	V	
OPERATING TEMPERATURE		-40		+85	°C	

Table 5-2: Functional specifications

Parameter	Conditions	Min	Nom	Мах	Unit	Note
GYRO						
Full Scale (FS)			±400		°/s	1
Resolution			24		bits	
			2 ⁻¹⁴		°/s	
Scale Factor Accuracy			±0.2		%	
Non-Linearity over ±200°/s			200		ppm	2
Bandwidth (-3dB)				262	Hz	3
Group Delay			2		ms	4
Bias Accuracy		-250	0	+250	°/h	
Bias error over temperature (1σ)	$\Delta T < \pm 1^{\circ}C/min$		30		°/h rms	
In-Run Bias Stability	Allan Variance @25°C		0.5		°/h	
Angular Random Walk	Allan Variance @25°C		0.2		°/√hr	
G Sensitivity				18	°/h /g	
G ² Sensitivity				tbd	U	
MISALIGNMENT						
STIM202X,Y,Z (1-axis version)			5		mrad	
STIM202XY,XZ,YZ (2-axis version)			5		mrad	
STIM202 (3-axis version)			1		mrad	
POWER CONSUMPTION						
Power consumption				1.5	W	
TIMING						
Time to transmit after Power-On				1	S	5
Time to transmit after Reset				1	S	6
Start-Up Time				10	S	7
RS422 Bit-Rate			ref. Table 5-3			
RS422 Bit-Rate Accuracy				±1	%	
Sampling Rate				1000	samples/s	3
Sampling Rate Accuracy				±1	%	
RS422 PROTOCOL						
Start Bit			1		bit	
Data Length			8		bits	
Parity			ref. Table 5-3			
Stop Bits			ref. Table 5-3			
RS422 LINE TERMINATION						
Input resistance	Line termination = ON		120		Ω	3
Input resistance	Line termination = OFF	48	125		kΩ	3
RESET (NRST PIN)						
Logic levels			and TTL comp	batible		
Minimum hold time for reset		5			ms	
Pull-Up Resistor		80	100		kΩ	
CHASSIS						
Resistance pin 6 -> chassis				0.1	Ω	
Isolation chassis -> GND (pin1)		100			MΩ	

Note 1: Output is monotonous and will saturate at ±480°/s

Note 2: Largest deviation from BSL (Best Straight Line) over the range specified.

Note 3: Other values can be configured, ref. Table 5-3

Note 4: Group delay with 262Hz filter-setting

Note 5: Time from Power-On to start of datagram transmissions (starting with part-number datagram)

Note 6: Time from Reset release to start of datagram transmissions (starting with part-number datagram)

Note 7: Time from Power-On or Reset to the reset of the Start-Up bit (Bit 6 in the STATUS byte ref. Table 5-8). During this period the output data should be regarded as non-valid.

DATASHEET

ButterflyGyro

ΤМ

STIM202 Multi-Axis Gyro Module

5.1 TYPICAL PERFORMANCE CHARACTERISTICS

5.1.1 Allan-Variance

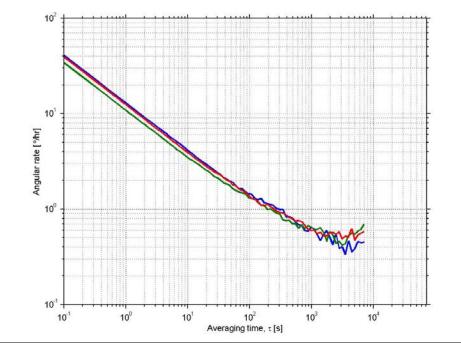


Figure 5-1: Typical Allan-Variance plot

5.1.2 Initial bias drift

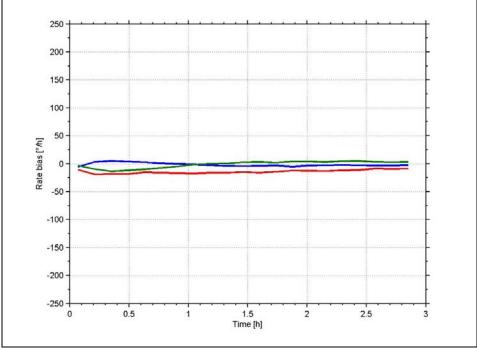


Figure 5-2: Typical initial bias drift

STIM202 Multi-Axis Gyro Module

5.1.3 Non-Linearity

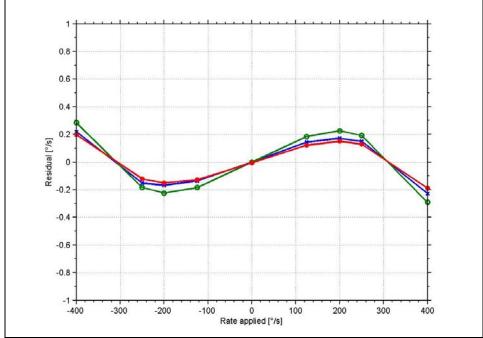


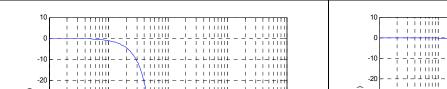
Figure 5-3: Typical Non-Linearity

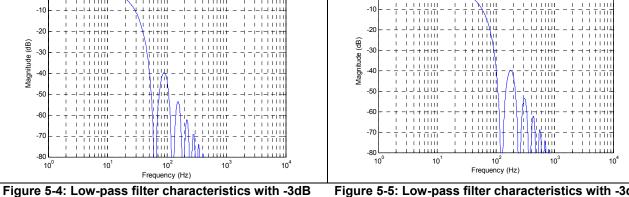
5.1.4

DATASHEET

- |- |-| +| +| +|

1 1 1 1 1

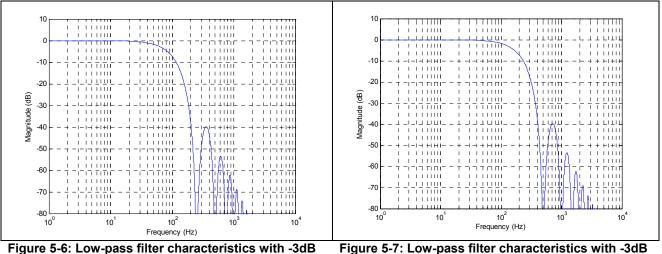

.


1111

STIM202 Multi-Axis Gyro Module

Т

+ + H H H



frequency at 16Hz

Low-pass filter characteristics

Figure 5-5: Low-pass filter characteristics with -3dB frequency at 33Hz

frequency at 66Hz

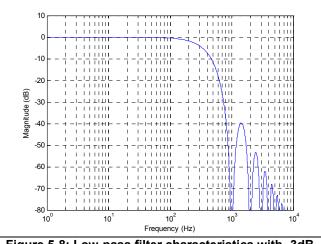


Figure 5-8: Low-pass filter characteristics with -3dB frequency at 262Hz

frequency at 131Hz

тм

STIM202 Multi-Axis Gyro Module

5.2 Configurable parameters

Table 5-3: Configurable parameters

Parameter	Configurations	Comments
DATAGRAM FORMAT	Standard	Contains measurements and status byte
	Extended	For future use
	Standard w,CR+LF	Has <cr><lf> added to standard datagram</lf></cr>
MEASUREMENT UNIT	Angular rate [°/s]	
	Incremental angle [°/sample]	
SAMPLING RATE	125 samples/s	
	250 samples/s	
	500 samples/s	
	1000 samples/s	
LOW-PASS FILTER -3dB	16Hz	CIC-type filters.
FREQUENCY	33Hz	Filter settings can be set individually for each
	66Hz	axis
	131Hz	
	262Hz	
RS422 BIT RATE	374400 bits/s	
	460800 bits/s	
	921600 bits/s	
RS422 PARITY	None	
	Odd	
	Even	
RS422 STOP BITS	1 stop bit	
	2 stop bits	
RS422 120Ω LINE TERMINATION	OFF	
	ON	

Refer to section 12 for information on how to configure STIM202 when ordering.

ButterflyGyro

тм

STIM202 Multi-Axis Gyro Module

5.3 Datagram specifications

Table 5-4: Specification of the Part Number datagram

	Bute# Byte# Bit#										
Byte# Standard datagram	Byte# Extended datagram	Standard datagram w.CR+LF	7	6	5	4	3	2	1	0	Specification
0	0	0	0 0 0	1 1 1	0 0 0	1 1 1	0 0 0	1 1 1	0 0 1	0 1 0	Identification datagram identifier: 0x54 for standard datagrams 0x55 for extended datagrams 0x56 for standard datagrams w.CR+LF
1	1	1	0	0	0	0	P1₃	P1 ₂	P1 ₁	P1 ₀	Low nibble: 1.digit (BCD) of part number
2	2	2	P2 ₃	P2 ₂	P2 ₁	P2 ₀	P3 ₃	P3 ₂	P3 ₁	P3 ₀	High nibble: 2.digit (BCD) of part number Low nibble: 3.digit (BCD) of part number
3	3	3	P43	P42	P4 ₁	P4 ₀	P5₃	P52	P51	P50	High nibble: 4.digit (BCD) of part number Low nibble: 5.digit (BCD) of part number
4	4	4	0	0	1	0	1	1	0	1	ASCII character "-" (0x2D)
5	5	5	P6 ₃	P6 ₂	P6 ₁	P6 ₀	P7₃	P72	P7 ₁	P70	High nibble: 6.digit (BCD) of part number Low nibble: 7.digit (BCD) of part number
6	6	6	P83	P82	P81	P80	P9₃	P92	P91	P90	High nibble: 8.digit (BCD) of part number Low nibble: 9.digit (BCD) of part number
7	7	7	0	0	1	0	1	1	0	1	ASCII character "-"(0x2D)
8	8	8	P10 ₃	P10 ₂	P10 ₁	P100	P11 ₃	P11 ₂	P11 ₁	P11 ₀	High nibble: 10.digit (BCD) of part number Low nibble: 11.digit (BCD) of part number
9	9	9	P11 ₃	P112	P11 ₁	P11 ₀	P13 ₃	P132	P131	P130	High nibble: 12.digit (BCD) of part number Low nibble: 13.digit (BCD) of part number
10	10	10	r ₇	r ₆	r₅	r ₄	r ₃	r ₂	r ₁	r ₀	Part number revision. Content of byte represents the ASCII-character of the revision. Numbering sequence: "-", "A", "B", , "Z"
N/A	11	N/A	х	Х	х	х	х	х	х	х	For future use.
N/A	12	N/A	х	х	х	х	х	х	х	х	For future use.
N/A	13	N/A	х	х	х	х	х	х	х	х	For future use.
11	14	11	C 7	C ₆	C5	C4	C ₃	C2	C ₁	C ₀	Cyclic Redundancy Check is performed on all preceding bytes and is generated from the polynomial: $x^8 + x^2 + x + 1$, seed = 0xFF
N/A	N/A	12	0	0	0	0	1	1	0	1	<cr></cr>
N/A	N/A	13	0	0	0	0	1	0	1	0	<lf></lf>

STIM202 Multi-Axis Gyro Module

Byte# Bit# Byte# Byte# Standard 7 6 5 4 3 2 1 0 Extended Standard Specification datagram datagram datagram w.CR+LF Identification datagram identifier 0 1 0 1 1 0 1 0 0x5A for standard datagrams 0 0 0 0x5B for extended datagrams 0 0 0 1 1 1 1 1 0x5C for standard datagrams w.CR+LF 0 0 0 1 0 1 1 0 1 1 1 0 1 0 0 1 1 1 0 ASCII-character for letter "N" High nibble: 1.digit (BCD) of serial number S2₂ 2 2 2 $S1_2$ S1₁ $S2_3$ S21 S2₀ S1₃ S1₀ Low nibble: 2.digit (BCD) of serial number High nibble: 3.digit (BCD) of serial number 3 3 3 S3₃ S3₂ S31 S30 S43 S42 S41 S40 Low nibble: 4.digit (BCD) of serial number High nibble: 5 digit (BCD) of serial number 4 4 4 S5₃ $S5_2$ S5₁ $S5_0$ S63 S6₂ S61 S6₀ Low nibble: 6.digit (BCD) of serial number High nibble: 7.digit (BCD) of serial number S82 S80 5 5 5 S7₃ S72 S71 S70 S83 **S8**1 Low nibble: 8.digit (BCD) of serial number High nibble: 9.digit (BCD) of serial number S10₂ 6 6 6 S91 S10₃ S101 S10₀ S9₃ $S9_2$ S90 Low nibble: 10.digit (BCD) of serial number High nibble: 11.digit (BCD) of serial number 7 S11₃ 7 7 S11₂ S11₁ S11₀ S11₃ S11₂ S11₁ S11₀ Low nibble: 12.digit (BCD) of serial number High nibble: 13.digit (BCD) of serial number 8 8 8 S13₃ S14₃ S13₂ S131 S13₀ S14₂ S141 S14₀ Low nibble: 14.digit (BCD) of serial number 9 9 9 х х х х х х х х For future use. 10 10 10 For future use. х х х х х х х х 11 N/A N/A х х х х х х х х For future use. N/A 12 N/A х х х х х х For future use. х х N/A 13 N/A х х х х х х х х For future use. Cyclic Redundancy Check is performed on all preceding bytes and is generated from 11 14 11 **C**7 C_6 **C**5 C_4 C₃ **C**₂ C_1 C_0 the polynomial: $x^{8} + x^{2} + x + 1$, seed = 0xFF N/A N/A 12 0 0 0 0 1 1 0 1 <CR> N/A N/A 13 0 0 0 0 1 0 1 0 <LF>

Table 5-5: Specification of the Serial Number datagram

STIM202 Multi-Axis Gyro Module

Table 5-6: Specification of the Configuration datagram

Table 5-0	Specific			Jing	uran			am			
Byte# Standard datagram	Byte# Extended datagram	Byte# Standard datagram w.CR+LF	7	6	5	в 4	it# 3	2	1	0	Specification
											Configuration datagram identifier
•	•		0	0	1	0	1	0	0	0	0x28 for standard datagrams
0	0	0	0	0	1	0	1	0	1	0	0x2A for extended datagrams
			Ő	Õ	1	Õ	1	Ő	1	1	0x2B for standard datagrams w.CR+LF
			Ŭ	Ŭ		Ŭ		Ū		-	Part number revision. Content of byte represents the
1	1	1	r 7	r 6	r ₅	r4	r ₃	r ₂	r ₁	r _o	ASCII-character of the revision. Numbering sequence: "- ", "A", "B",, "Z"
2	2	2	f ₇	f ₆	f ₅	f ₄	f ₃	f ₂	f ₁	f ₀	Firmware revision. Numbering sequence: 0, 1,, 255
3	3	3	h ₇	h ₆	h ₅	h ₄	h ₃	h_2	h ₁	h ₀	Hardware revision. Numbering sequence: 0, 1,, 255
			0	x	x	x	x	x	x	x	System configuration, Byte 1: Z-axis is inactive
			1	x	x	x	x	x	x	x	Z-axis is active
			x	î	Ô	Ô	x	x	x	x	LP filter -3dB frequency for Z-axis = 262Hz
				0	1	1					
			х	-			х	х	х	х	LP filter -3dB frequency for Z-axis = 121Hz
			х	0	1	0	х	х	х	х	LP filter -3dB frequency for Z-axis = 66Hz
			х	0	0	1	х	х	х	х	LP filter -3dB frequency for Z-axis = 33Hz
4	4	4	х	0	0	0	х	х	х	х	LP filter -3dB frequency for Z-axis = 16Hz
			х	х	х	х	0	х	х	х	Y-axis is inactive
			х	х	х	х	1	х	х	х	Y-axis is active
			х	х	х	х	х	1	0	0	LP filter -3dB frequency for Y-axis = 262Hz
			х	х	х	х	х	0	1	1	LP filter -3dB frequency for Y-axis = 121Hz
			x	x	x	x	x	Ő	1	0	LP filter -3dB frequency for Y-axis = $66Hz$
								0	0	1	LP filter -3dB frequency for Y-axis = 33Hz
			х	х	х	х	х	-	-		
			Х	Х	х	х	х	0	0	0	LP filter -3dB frequency for Y-axis = 16Hz
											System configuration, Byte 2:
			0	х	х	х	х	х	х	х	X-axis is inactive
			1	х	х	х	х	х	х	х	X-axis is active
			х	1	0	0	х	х	х	х	LP filter -3dB frequency for X-axis = 262Hz
			x	0	1	1	x	x	x	x	LP filter -3dB frequency for X-axis = 121Hz
			x	Õ	1	Ö	x	x	x	x	LP filter -3dB frequency for X-axis = 66Hz
				õ	0	1					LP filter -3dB frequency for X-axis = 33Hz
5	5	5	х	-	-		х	х	х	х	
			х	0	0	0	x	X	x	х	LP filter -3dB frequency for X-axis = 16Hz
			х	х	х	х	0	1	1	х	Sampling frequency = 1000 samples/s
			х	х	х	х	0	1	0	х	Sampling frequency = 500 samples/s
			х	х	х	х	0	0	1	х	Sampling frequency = 250 samples/s
			х	х	х	х	0	0	0	х	Sampling frequency = 125 samples/s
			х	х	х	х	х	х	х	0	Output unit = ANGULAR RATE
			х	х	х	х	х	х	х	1	Output unit = INCREMENTAL ANGLE
											System configuration, Byte3:
			0	v	v	v	v	v	v	v	Datagram format = STANDARD+STANDARD w.CR+LF
				х	х	х	х	х	х	х	
			1	X	x	x	х	х	х	х	Datagram format = EXTENDED
			х	0	0	0	х	х	х	х	Bit rate = 374400 bits/s
			х	0	0	1	х	х	х	х	Bit rate = 460800 bits/s
			х	0	1	0	х	х	х	х	Bit rate = 921600 bits/s
6	6	6	х	х	х	х	0	х	х	х	Stop bit = 1
			х	х	х	х	1	х	х	х	Stop bits = 2
			х	х	x	х	x	0	0	х	Parity = none
			x	x	x	x	x	Ő	1	x	Parity = even
			x	x	x	x	x	1	0	x	Parity = odd
										ô	Line termination = OFF
			х	х	x	х	х	х	х	-	
			Х	Х	Х	Х	Х	Х	х	1	Line termination = ON
7	7	7	S ₇	S ₆	S ₅	S ₄	S ₃	S ₂	S ₁	S ₀	STATUS byte. Ref. Table 5-8 for specification of the
		<u> </u>	37	36	35	34	33	32	31	30	STATUS byte.
8	8	8	Х	Х	х	х	х	х	х	х	For future use.
9	9	9	х	х	х	х	х	х	х	х	For future use.
10	10	10	X	x	x	x	x	x	x	x	For future use.
N/A	10	N/A									For future use.
			х	х	х	х	х	х	х	х	
N/A	12	N/A	Х	Х	х	х	х	Х	х	Х	For future use.
N/A	13	N/A	Х	Х	х	х	х	х	х	Х	For future use.
						C ₄	C ₃	C2	C ₁	C ₀	Cyclic Redundancy Check is performed on all preceding bytes and is generated from the polynomial:
11	14	11	C ₇	C ₆	C ₅	U 4	•3	•2	•	0	bytes and is generated norm the polynomial.
	14	11	C ₇	C ₆	C ₅	04	03	•2	•	0	$x^8 + x^2 + x + 1$, seed = 0xFF
11										-	$x^{8} + x^{2} + x + 1$, seed = 0xFF
	14 N/A N/A	11 12 13	C ₇ 0	C ₆ 0	0 0	0	1 1	1 0	0	1 0	$x^8 + x^2 + x + 1$, seed = 0xFF <cr><cr><cr></cr></cr></cr>

ButterflyGyro

ТΜ

STIM202 Multi-Axis Gyro Module

Puto#	Byte#	Byte#				В	it#	_	_		
Byte# Standard datagram	Extended datagram	Standard datagram w.CR+LF	7	6	5	4	3	2	1	0	Specification
0	0	0	1 1 1	0 0 0	0 0 0	1 1 0	0 0 0	0 0 0	0 1 1	0 0 1	Normal Mode datagram identifier 0x90 standard datagram 0x92 extended datagram 0x93 standard datagram w. CR+LF
1	1	1	X ₂₃	X ₂₂	X ₂₁	X ₂₀	X ₁₉	X ₁₈	X ₁₇	X ₁₆	X avia avra autout Baf. Chapter 8.2.2.1 for appyoraion
2	2	2	X 15	X ₁₄	X ₁₃	X ₁₂	X 11	X 10	X 9	X8	X-axis gyro output. Ref. Chapter 8.2.2.1 for conversion to units
3	3	3	X ₇	X 6	X 5	X4	X 3	X ₂	X ₁	X 0	
4	4	4	y ₂₃	y ₂₂	y ₂₁	y ₂₀	y ₁₉	y ₁₈	y ₁₇	У 16	Y-axis gyro output. Ref. Chapter 8.2.2.1 for conversion
5	5	5	y 15	У 14	y ₁₃	y ₁₂	y 11	y ₁₀	y ₉	y ₈	to units
6	6	6	y ₇	y ₆	y 5	У ₄	y ₃	У ₂	y 1	y ₀	
7	7	7	Z ₂₃	Z ₂₂	Z ₂₁	Z ₂₀	Z ₁₉	Z ₁₈	Z ₁₇	Z ₁₆	Z-axis gyro output. Ref. Chapter 8.2.2.1 for conversion
8	8	8	Z ₁₅	Z ₁₄	Z ₁₃	Z ₁₂	Z ₁₁	Z ₁₀	Z9	Z ₈	to units
9	9	9	Z7	Z ₆	Z 5	Z4	Z 3	Z2	Z ₁	Z ₀	
10	10	10	S ₇	S ₆	S 5	S ₄	S ₃	S ₂	S ₁	S ₀	STATUS byte. Ref.Table 5-8 for specification of this byte.
N/A	11	N/A	Х	Х	Х	х	х	х	х	х	For future use.
N/A	12	N/A	Х	Х	Х	х	х	х	х	Х	For future use.
N/A	13	N/A	Х	Х	Х	х	х	х	х	х	For future use.
11	14	11	C7	C ₆	C 5	C ₄	C ₃	C ₂	C ₁	C ₀	Cyclic Redundancy Check is performed on all preceding bytes and is generated from the polynomial: $x^8 + x^2 + x + 1$, seed = 0xFF
N/A	N/A	12	0	0	0	0	1	1	0	1	<cr></cr>
N/A	N/A	13	0	0	0	0	1	0	1	0	<lf></lf>

Table 5-7: Specification of the Normal Mode datagram

5.4 Status byte

Table 5-8: Interpretation of bits in STATUS byte

Bit	STATUS bit information	Comment
7	0=OK, 1=System integrity error	
6	0=OK, 1=Start-Up	
5	0=OK, 1=Outside operating conditions	
4	0=OK, 1=Overload	Bits 0-2 will flag the overload channel(s)
3	0=OK, 1=Error in gyro-channel	Bits 0-2 will flag the error channel(s)
2	0=OK, 1=Z-channel	
1	0=OK, 1=Y-channel	
0	0=OK, 1=X-channel	

6 ABSOLUTE MAXIMUM RATINGS

Stresses beyond those listed in Table 6-1 may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Table 0-1. Absolute maxin	lum ratings	
Parameter	Rating	Comment
Dynamic overload	5000°/s	Any direction
Mechanical shock	1500g/0.5ms half-sine	Any direction
ESD human body model	±15kV	On RS422 pins (pins 4,5,9 and 10)
ESD human body model	±2kV	Other pins
ESD charge device model	±500V	
Storage temperature	-50°C to +90°C	
VSUP to GND	-0.5 to +7V	
RxD+ or RxD- to GND	-0.3V to +7V	
RxD+ to RxD-	±6V	with 120Ω Line Termination = ON
TxD+ or TxD- to GND	VCC-15V to +15V	
NRST to GND	-0.3V to +7V	
Chassis to GND	tbd	

Table 6-1: Absolute maximum ratings

7 MECHANICAL

Table 7-1: Mechanical specifications

Parameter	Conditions	Min Nom Max	Unit	Note
WEIGHT		55	grams	
DUST AND HUMIDITY		IP56		
CLASSIFICATION				
CONNECTOR				
Туре		Nicomatic CMM220 series male		
Number of pins		10		
Contact type		LF		
PLUG				
Proposed plug to fit connector		Nicomatic CMM-222-S-10-M18		
Proposed cover to fit plug		Nicomatic CMM-C2-15		
FIXATION BOLTS	2.5mm tool	M4 DIN 7991-A2		
	3mm tool	M4 DIN 912-A2		

7.1 Mechanical dimensions

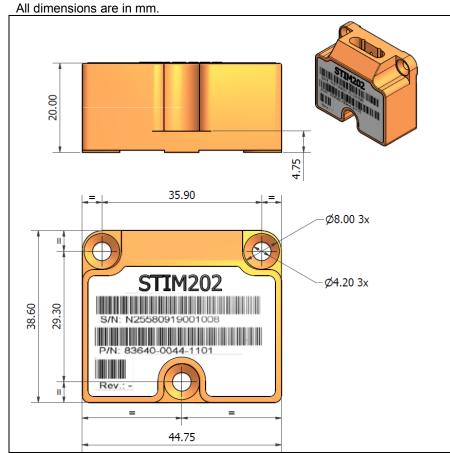
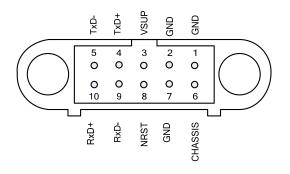


Figure 7-1: Mechanical dimensions



ButterflyGyro

ΤМ

STIM202 Multi-Axis Gyro Module

7.2 Pin configuration

Figure 7-2: Pin configuration as seen from front of STIM202

Pin#	Label	Туре	Description
1	GND	SUPPLY	Power ground (0V)
2,7	GND	INPUT	Test pins: Connect to ground (0V)
3	VSUP	SUPPLY	Power supply (+5V)
4	TxD+	OUTPUT	RS422 positive output
5	TxD-	OUTPUT	RS422 negative output
6	CHASSIS	CHASSIS	Chassis connection (galvanic isolation from power ground)
8	NRST	INPUT	Reset (if not in use, connect to VSUP or leave floating)
9	RxD-	INPUT	RS422 negative input
10	RxD+	INPUT	RS422 positive input

7.3 Definition of axes

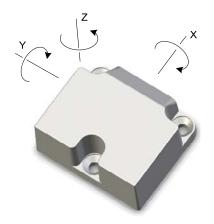


Figure 7-3: Definition of axes

DATASHEET

ButterflyGyro

8 BASIC OPERATION

STIM202 is very simple to use. After having connected power, the unit will start performing measurements and transmit the results over the RS422 interface without any need for additional signalling or set-up. Figure 8-1 shows the simplest connection set-up for STIM202.

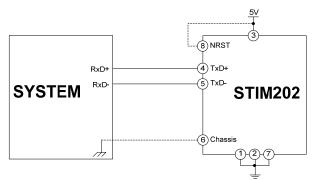


Figure 8-1: Transmit-Only Electrical Connection Diagram

In order to take full advantage of all features of STIM202 the unit needs to be connected as shown in Figure 8-2. In this set-up the system can reset the unit without having to toggle power, configuration parameters can be changed and extended information like diagnostic information can be read from the device.

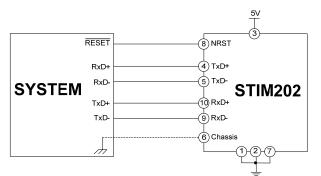


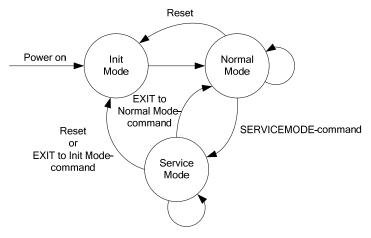
Figure 8-2: Full Function Electrical Connection Diagram

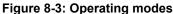
8.1 Reset

STIM202 has a separate reset pin (NRST) in order for the application to reset the unit without having to toggle power.

The reset is active low and has an internal pull-up. Hence the input could be left floating if not in use.

The reset signal is routed to the reset of the microcontroller and effectively forces STIM202 into Init Mode (ref. Figure 8-3 and chapter 8.2.1).




ButterflyGyro

STIM202 Multi-Axis Gyro Module

8.2 Operating modes

The operating modes of STIM202 are shown in Figure 8-3:

8.2.1 Init Mode

Init Mode is entered after power on, after an external reset, when receiving a reset-command in Normal Mode or when exiting to Init Mode from Service Mode. In Init Mode the system waits for internal references to settle, resets and synchronizes the gyro measurements channels and transmits three special datagrams containing part number, serial number and configuration data of 12 or 15 bytes (dependent on the chosen datagram format in Normal Mode).

Figure 8-4, Figure 8-5 and Figure 8-6 show the sequence of the Part Number datagram, Table 5-4 specifies its contents.

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11
0x54	0,P1	P2,P3	P4,P5	" <u>"</u> "	P6,P7	P8,P9	" <u>"</u> "	P10,P11	P12,P13	Rev	CRC

Figure 8-4: Part number datagram with standard datagrams in Normal Mode

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	Byte 12	Byte 13	Byte 14
0x55	0,P1	P2,P3	P4,P5	" <u>"</u> "	P6,P7	P8,P9	" <u>"</u> "	P10,P11	P12,P13	Rev	EXT1	EXT2	EXT3	CRC

Figure 8-5: Part Number datagram with extended datagrams in Normal Mode

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	Byte 12	Byte 13
0x56	0,P1	P2,P3	P4,P5	" <u>"</u> "	P6,P7	P8,P9	" <u>"</u> "	P10,P11	P12,P13	Rev	CRC	<cr></cr>	<lf></lf>

Figure 8-6: Part number datagram with standard datagrams w.CR+LF in Normal Mode

Figure 8-7, Figure 8-8 and Figure 8-9 show the sequence of the Serial Number datagram, Table 5-5 specifies its contents.

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11
0x5A	"N"	S1,S2	S3,S4	S5,S6	S7,S8	S9,S10	S11,S12	S13,S14	xx	XX	CRC

Figure 8-7: Serial Number datagram with standard datagrams in Normal Mode

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	Byte 12	Byte 13	Byte 14
0x5B	"N"	S1,S2	S3,S4	S5,S6	S7,S8	S9,S10	S11,S12	S13,S14	ХХ	XX	EXT1	EXT2	EXT3	CRC

Figure 8-8: Serial Number datagram with extended datagrams in Normal Mode

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	Byte 12	Byte 13	
0x5C	"N"	S1,S2	S3,S4	S5,S6	S7,S8	S9,S10	S11,S12	S13,S14	ХХ	ХХ	CRC	<cr></cr>	<lf></lf>	
Ciaura (

Figure 8-9: Serial Number datagram with standard datagrams w.CR+LF in Normal Mode

ButterflyGyro

STIM202 Multi-Axis Gyro Module

Figure 8-10, Figure 8-11 and Figure 8-12 show the sequence of the Configuration datagram, Table 5-6 specifies its contents.

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11
0x28	Rev	FW rev	HW rev	System Conf1	System Conf2	System Conf3	STATUS	XX	XX	XX	CRC

Figure 8-10: Configuration datagram with standard datagrams in Normal Mode

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	Byte 12	Byte 13	Byte 14
0x2A	Rev	FW rev	HW rev	System Conf1	System Conf2	System Conf3	STATUS	ХХ	XX	XX	EXT1	EXT2	EXT3	CRC

Figure 8-11: Configuration datagram with extended datagrams in Normal Mode

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	Byte 12	Byte 13
0x28	Rev	FW rev	HW rev	System Conf1	System Conf2	System Conf3	STATUS	ХХ	ХХ	ХХ	CRC	<cr></cr>	<lf></lf>

Figure 8-12: Configuration datagram with standard datagrams w.CR+LF in Normal Mode

After having transmitted the special Part Number, Serial Number and Configuration datagrams, STIM202 enters Normal Mode.

All these special datagrams can also be requested by commands in Normal Mode, ref. Chapter: 9.

8.2.2 Normal Mode

In Normal Mode STIM202 will constantly measure the gyro channels and transmit at the chosen sample rate. A datagram with extended content is prepared for future use. STIM202 will continue to transmit data regardless of any errors reported in the STATUS-byte (ref. Table 5-8). Hence the content of the STATUS-byte should continuously be examined.

Figure 8-13, Figure 8-14 and show the sequence of the transmitted datagrams in Normal Mode, Table 5-7 specifies its contents.

0x90 CH X _{2(MSB)} CH X ₁ CH X _{0(LSB)} CH Y _{2(MSB)} CH Y ₁ CH Y _{0(LSB)}) CH Z _{2(MSB)}	CH Z ₁	CH Z _{Q(LSB)}	STATUS	CRC

Figure 8-13: Datagram in Normal Mode with standard content

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	Byte 12	Byte 13	Byte 14
0x92	CH X _{2(MSB)}	CH X ₁	CH X _{Q(LSB)}	CH Y _{2(MSB)}	CH Y ₁	CH Y _{Q(LSB)}	CH Z _{2(MSB)}	CH Z1	CH Z _{O(LSB)}	STATUS	EXT1	EXT2	EXT3	CRC

Figure 8-14: Datagram in Normal Mode with extended content

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	Byte 12	Byte 13	
0x93	CH X _{2(MSB)}	CH X ₁	CH X _{0(LSB)}	CH Y _{2(MSB)}	CH Y ₁	CH Y _{0(LSB)}	CH Z _{2(MSB)}	CH Z ₁	CH Z _{0(LSB)}	STATUS	CRC	<cr></cr>	⊲LF>	

Figure 8-15: Datagram in Normal Mode with standard content w.CR+LF termination

8.2.2.1 Start-Up

When STIM202 enters Normal Mode from Init Mode, there will be a start-up period where STIM202 is stabilizing the gyros. During this period bit 6 is set in the STATUS-byte (ref. Table 5-8) to communicate its condition. Once stabilized, bit 6 will be cleared. During this period the output data should be regarded as non-valid.

There will not be any start-up period when STIM202 is exiting from Service Mode directly to Normal Mode.

8.2.2.2 Converting output to units

The following equations show how to convert the output to units. Please note that the output data is represented as two's complement (most significant bit is the sign-bit).

In the case of STIM202 being configured to output angular rate, Equation 1 and Figure 8-16 show how to convert to [°/s]:

ButterflyGyro

STIM202 Multi-Axis Gyro Module

Equation 1: Converting output to [°/s]:

 $Output[^{\circ}/s] = \frac{(AR_1) \cdot 2^{16} + (AR_2) \cdot 2^8 + (AR_3)}{2^{14}}$

where AR_1 is the most significant byte of the 24bit output AR_2 is the middle byte of the 24bit output

 AR_2 is the middle byte of the 24bit output AR_3 is the least significant byte of the 24bit output

			– AR	1 —				•			– AR	2				•			- AR ₃				
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Sign	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	2 ⁻¹	2-2	2 ⁻³	2-4	2 ⁻⁵	2 ⁻⁶	2 ⁻⁷	2 ⁻⁸	2 ^{.9}	2 ⁻¹⁰	2 ⁻¹¹	2 ⁻¹²	2 ⁻¹³	2-14

Figure 8-16: Converting output bytes to [°/s]

In the case of STIM202 being configured to output incremental angle per sample, the equations for conversion to [°] can be found in Equation 2:

Equation 2: Converting output to [°/sample]

 $Output[^{\circ}/sample] = \frac{(IA_1) \cdot 2^{16} + (IA_2) \cdot 2^8 + (IA_3)}{2^{14}} \cdot \frac{1}{samplingrate[samples/s]}$

where IA_1 is the most significant byte of the 24bit output

IA₂ is the middle byte of the 24bit output

 IA_3 is the least significant byte of the 24bit output

Considering Equation 1 and Equation 2 one may draw the conclusion that the output from STIM202 is the same regardless of the output unit being [°/s] or [°/sample]. This is not correct. In the case of having selected [°/sample], the output will also take into account any deviation between the actual sampling rate and the nominal sampling rate. Figure 8-17 through to Figure 8-20 below show the bit values of the output at different sampling rates.

-			– IA ₁					-			– IA ₂					•			- IA₃				
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Sign	2 ⁸ x10 ⁻³	2 ⁷ x10 ⁻³	2 ⁶ x10 ⁻³	2 ⁵ x10 ⁻³	2 ⁴ x10 ⁻³	2 ³ x10 ⁻³	2 ² x10 ⁻³	2 ¹ x10 ⁻³	2 ⁰ x10 ⁻³	2 ⁻¹ x10 ⁻³	2 ² x10 ⁻³	2 ³ x10 ³	2 ⁴ x10 ⁻³	2⁵x10⁻³	2 ⁶ x10 ⁻³	2 ⁻⁷ x10 ⁻³	2 ⁸ x10 ³	2 ⁹ x10⁻³	2 ⁻¹⁰ x10 ⁻³	2 ⁻¹¹ x10 ⁻³	2 ⁻¹² x10 ⁻³	2 ⁻¹³ x10 ⁻³	2 ⁻¹⁴ x10 ⁻³

Figure 8-17: Converting output bytes to [°] with sampling rate = 1000 samples/s

			– IA ₁					-			– IA ₂					•			- IA ₃				
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Sign	2 ⁹ x10 ⁻³	2 ⁸ x10 ⁻³	2 ⁷ x10 ⁻³	2 ⁶ x10 ⁻³	2 ⁵ x10 ⁻³	2 ⁴ x10 ⁻³	2 ³ x10 ⁻³	2 ² x10 ⁻³	2 ¹ x10 ⁻³	2 ⁰ x10 ⁻³	2 ⁻¹ x10 ⁻³	2 ² x10 ³	2 ³ x10 ⁻³	2 ⁻⁴ x10 ⁻³	2 ⁵ x10 ⁻³	2 ⁻⁶ x10 ⁻³	2 ⁻⁷ x10 ⁻³	2 ⁸ x10 ⁻³	2 ⁻⁹ x10 ⁻³	2 ⁻¹⁰ x10 ⁻³	2 ⁻¹¹ x10 ⁻³	2 ⁻¹² x10 ⁻³	2 ⁻¹³ x10 ⁻³

Figure 8-18: Converting output bytes to [°] with sampling rate = 500 samples/s

-	•			– IA ₁					•			– IA ₂					•			- IA₃				
	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Sign	2 ¹⁰ x10 ⁻³	2 ⁹ x10 ⁻³	2 ⁸ x10 ⁻³	2 ⁷ x10 ⁻³	2 ⁶ x10 ⁻³	2 ⁵ x10 ⁻³	2 ⁴ x10 ⁻³	2 ³ x10 ⁻³	2 ² x10 ⁻³	2 ¹ x10 ⁻³	2 ⁰ x10 ⁻³	2 ⁻¹ x10 ⁻³	2 ² x10 ⁻³	2 ⁻³ x10 ⁻³	2 ⁻⁴ x10 ⁻³	2⁵x10³	2 ⁶ x10 ⁻³	2 ⁷ x10 ⁻³	2*x10 ⁻³	2 ⁹ x10 ³	2 ⁻¹⁰ x10 ⁻³	2 ⁻¹¹ x10 ⁻³	2 ⁻¹² x10 ⁻³

Figure 8-19: Converting output bytes to [°] with sampling rate = 250 samples/s

-			– IA ₁					-			– IA ₂					•			- IA ₃				
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Sign	2 ¹¹ x10 ⁻³	2 ¹⁰ x10 ⁻³	2 ⁹ x10 ⁻³	2 ⁸ x10 ⁻³	2 ⁷ x10 ⁻³	2 ⁶ x10 ⁻³	2 ⁵ x10 ⁻³	2 ⁴ x10 ⁻³	2 ³ x10 ⁻³	2 ² x10 ³	2 ¹ x10 ⁻³	2 ⁰ x10 ⁻³	2 ⁻¹ x10 ⁻³	2 ⁻² x10 ⁻³	2 ⁻³ x10 ⁻³	2 ⁴ x10 ⁻³	2 ⁵ x10 ⁻³	2 ⁶ x10 ⁻³	2 ⁻⁷ x10 ⁻³	2 ⁸ x10 ⁻³	2 ⁹ x10 ³	2 ⁻¹⁰ x10 ⁻³	2 ⁻¹¹ x10 ⁻³

Figure 8-20: Converting output bytes to [°] with sampling rate = 125 samples/s

ButterflyGyro

STIM202 Multi-Axis Gyro Module

8.2.3 Service Mode

In Service Mode the communication interface is human readable and hence the communication format supports well the use of terminal-based software during the development phase, when the configuration of a device needs to be changed or during investigations into an observed problem.

When Service Mode is entered, STIM202 will respond with its configuration information (same as the response to the <u>i</u> (INFORMATION) command, ref: Figure 10-1).

A set of commands are available, ref. Chapter 10, enabling the user to change intermediately or permanently the configuration parameters, display latest measurement results, display higher details on error information and perform a full diagnostic of the unit.

In Service Mode the gyro measurements will still be running in the background, enabling to switch directly back to Normal Mode without the need for any stabilisation time of filters, etc. However the measurement data itself, when STIM202 is in Service Mode are not transmitted and therefore lost. By using the <u>a</u> (SINGLE-SHOT MEASUREMENT) command (ref. Chapter 10.2) it is possible to display single measurement results.

Exiting Service Mode can be done in several ways:

- 1. Using the external reset. This will force STIM202 into Init Mode. Please be advised that during Init Mode, all the configuration parameters are loaded from flash. If any of the configuration parameters have been changed during the Service Mode session but not saved to flash, these changes will be overwritten by the content already stored in flash.
- 2. Using the <u>x</u> (EXIT) command. When using this command a parameter is required to decide whether the device should go to Init Mode or to Normal Mode. When exiting to Normal Mode, any of the changes made to the configuration parameters will still be valid. However, if not saved, the configuration parameters will be overwritten by the content already stored in flash at the next power-up or reset.

8.3 Self diagnostics

STIM202 is constantly checking its internal status. The checks include:

- Check of internal references
- Check of gyros (error and overload)
- o Check of internal temperatures
- o Check of RAM and flash
- Check of supply voltage

When an error situation is detected, the corresponding bit in the STATUS byte (ref. Table 5-8) will be set.

The bits in the STATUS are valid for the data in a single transmission. Hence any error condition is not latched.

In Service Mode it is possible to see the last detected error by using the <u>i e</u> (INFORMATION on LAST ERROR IN NORMAL MODE) command, ref. Chapter 10.1 or run a full diagnostic and see the result of the individual checks by using the <u>c</u> (DIAGNOSTIC) command, ref. Chapter 10.3.

ButterflyGyro

STIM202 Multi-Axis Gyro Module

9 COMMANDS IN NORMAL MODE

Several commands are available in Normal Mode, as listed in Table 9-1. Please note that all commands in Normal Mode must be transmitted in upper case letters.

Table 9-1 Available commands in Normal Mode

Command	Short description
Ν	Transmits one Part Number datagram
I	Transmits one Serial Number datagram
С	Transmits one Configuration datagram
R	Resets the unit
SERVICEMODE	Enters Service Mode

Table 9-2 List of special ASCII characters used in Normal Mode

Char	Hex	Dec	Short description
<cr></cr>	0x0D	13	"Carriage Return": used as execution character for commands

No echo of received command characters nor error messages will appear for these commands. Only at the receipt of the complete correct command, STIM202 executes accordingly.

NB: if OUTPUT-UNIT is set to INCREMENTAL ANGLE (ref. Chapter 10.7), the transmitted incremented angle in the datagram following any of the requested special datagrams will NOT contain the incremental angle since the last transmitted measurement. Hence the incremented angle occurring during the transmission of a special requested datagram will be lost.

9.1 N (PART NUMBER DATAGRAM) command

General description: Requests transmission of a Part Number datagram (ref. Figure 8-4 and Figure 8-5).

Table 9-3 : Available I (PART NUMBER DATAGRAM) command

Syntax	Response
N <cr></cr>	Transmits one Part Number datagram

The Part Number datagram will replace the next transmitted Normal Mode datagram.

9.2 I (SERIAL NUMBER DATAGRAM) command

General description: Requests transmission of a Serial number datagram (ref. Figure 8-7 and Figure 8-8).

Table 9-4 : Available I (SERIAL NUMBER DATAGRAM) command

Syntax	Response
I <cr></cr>	Transmits one Serial Number datagram

The Serial Number datagram will replace the next transmitted Normal Mode datagram.

9.3 C (CONFIGURATION DATAGRAM) command

General description: Requests transmission of a configuration datagram (ref. Figure 8-10 and Figure 8-11).

Table 9-5: Available C (CONFIGURATION DATAGRAM) command

Syntax	Response
C <cr></cr>	Transmits one Configuration datagram

The Configuration datagram will replace the next transmitted Normal Mode datagram.

STIM202 Multi-Axis Gyro Module

9.4 R (RESET) command

General description: Force a Reset

Table 9-6: Available R (RESET) command

Syntax	Response
R <cr></cr>	Resets the unit

9.5 SERVICEMODE command

General description : Enters Service Mode (ref. chapter 8.2.3).

Table 9-7: Available SERVICEMODE command

Syntax	Response
SERVICEMODE <cr></cr>	Enters Service Mode

If the command is received during the transmission of a datagram, it will complete the transmission before entering Service Mode.

When entering Service Mode, the configuration and identification data of the device will be listed, as shown in Figure 9-1:

SERIAL NUMBER = N25580846002002
PRODUCT = STIM202XZ
PART NUMBER = 83642-1034-0121 REV -
HW CONFIG = M5432 REV 0
FW CONFIG = SWD11691 REV 0
OUTPUT UNIT = [°/SAMPLE] – INCREMENTAL ANGLE
SAMPLING FREQUENCY [Hz] = 1000
LP FILTER -3DB FREQUENCY, X-AXIS [Hz] = 256
LP FILTER -3DB FREQUENCY, Y-AXIS [Hz] = NA
LP FILTER -3DB FREQUENCY, Z-AXIS [Hz] = 256
DATAGRAM FORMAT = STANDARD
BIT RATE [BPS] = 374400
DATA LENGTH = 8
STOP BITS = 1
PARITY = EVEN
LINE TERMINATION = ON
>

Figure 9-1: Example of response from SERVICEMODE command

10 COMMANDS IN SERVICE MODE

Several commands are available in Service Mode, as listed in Table 10-1. Please note that all commands in Service Mode must be transmitted in lower case letters.

Table 10-1 Available commands in Service Mode

Command	Short description	
i	Lists specific information (e.g. serial number, configuration, error information)	
а	a Performs a single-shot measurement	
С	Performs a diagnostic of the unit	
d	Changes datagram format (standard, extended or standard with CR+LF-termination)	
t	Changes transmission parameters (e.g. bit rate, data-length, stop-bits)	
r	Turns line termination ON or OFF	
u	Changes measurement output unit (e.g. angular rate or incremental angle)	
f	Changes LP filter -3dB frequency	
m	Changes sampling frequency	
s	Saves configuration data	
х	Exits Service Mode and returns to Normal Mode or Init Mode	
Z	Restore to factory settings	
?	Help function on the available commands in Service Mode	

Table 10-2 List of special ASCII characters used in Service Mode

Char	Hex	Dec	Short description
<bs></bs>	0x08	8	"Back Space": deletes last received character (received since last <cr>)</cr>
<cr></cr>	0x0D	13	"Carriage Return": typically used as execution character for commands
<sp></sp>	0x20	32	"Space": used to separate command and first parameter
۰, ,	0x2C	44	"Comma": used to separate parameters in a command
'>'	0x3E	62	Used together with <cr> as: "Ready to receive new command"-prompt</cr>

When STIM202 is in Service Mode and ready to receive a new command, it will issue the special ASCII character <CR> followed by '>'. As some commands (e.g. SINGLE-SHOT MEASUREMENT-command) may respond with a varying number of lines, automated set-ups should look for the special prompt-sequence (<CR>+'>') before issuing a new command.

Received characters will be echoed. A command is decoded and executed when receiving the special ASCII character <CR>. <BS> is also recognised and will delete the last received character in the input buffer. The size of the input buffer is 80 characters. <BS> is valid for the characters received since last <CR>.

The command-character and first parameter (when applicable) are separated by a space (character 0x20). When there are more than one parameter to a command (e.g. TRANSMISSION PARAMETER-command), these must be separated by a comma (character 0x2C).

In the event of an unknown command, inconsistent syntax or incorrect value of parameter(s), STIM202 will respond with an error message. Error messages are on the format:

E<nnn><SP><Error description><CR> where nnn is an error number

ButterflyGyro[™]

STIM202 Multi-Axis Gyro Module

10.1 i (INFORMATION) command

General description: Lists various requested information about the device

Table 10-3 : Available i (INFORMATION) commands

Syntax	Response
i <cr></cr>	Lists the product configuration and identification data
i <sp><cmd><cr></cr></cmd></sp>	Gives information about the specific parameter

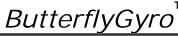
Table 10-4 : Allowed values for <cmd> parameter for i (INFORMATION) commands

<cmd></cmd>	Result	
S	s Returns the serial number of the device	
n	n Returns the product name of the device	
x Returns the part number of the device		
h	Returns the HW configuration and revision of the device	
pReturns the FW configuration and revision of the devicemReturns the sampling frequency of the device		
		f
d		
t	t Returns the transmission parameters of the device r Returns the line termination (ON or OFF)	
r		
u	Returns the output unit of the device	
е	Prints the extended error information from the last detected error in Normal Mode	

Table 10-5: Error messages for i (INFORMATION) commands

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command or parameter is not recognised
E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command
	PARAMETERS	and first parameter

>i
SERIAL NUMBER = N25580846002002
PRODUCT = STIM202XZ
PART NUMBER = 83642-1034-0121 REV –
HW CONFIG = M5432 REV 0
FW CONFIG = SWD11691 REV 0
OUTPUT UNIT = [°/SAMPLE] – INCREMENTAL ANGLE
SAMPLING FREQUENCY [Hz] = 1000
LP FILTER -3DB FREQUENCY, X-AXIS [Hz] = 256
LP FILTER -3DB FREQUENCY, Y-AXIS [Hz] = NA
LP FILTER -3DB FREQUENCY, Z-AXIS [Hz] = 256
DATAGRAM FORMAT = STANDARD
BIT RATE [BPS] = 374400
DATA LENGTH = 8
STOP BITS = 1
PARITY = EVEN
LINE TERMINATION = ON
>


Figure 10-1: Example of response from i (INFORMATION) command

>i s SERIAL NUMBER = N25580846002002

>

Figure 10-2: Example of response from i s (INFORMATION on SERIAL NUMBER) command

STIM202 Multi-Axis Gyro Module

>i n PRODUCT = STIM202XZ

>

Figure 10-3: Example of response from in (INFORMATION on PRODUCT NAME) command

>i x PART NUMBER = 83642-1034-0121 REV -

>

>

Figure 10-4: Example of response from i x (INFORMATION on PART NUMBER) command

>i h HW CONFIG = M5432 REV 0

Figure 10-5: Example of response from i h (INFORMATION on HW CONFIGURATION) command

>i p FW CONFIG = SWD11691 REV 0

Figure 10-6: Example of response from i p (INFORMATION on FW CONFIGURATION) command

```
>i m
SAMPLING FREQUENCY [Hz] = 1000
```

>

Figure 10-7: Example of response from i m (INFORMATION on SAMPLING FREQUENCY) command

>i f LP FILTER -3DB FREQUENCY, X-AXIS [Hz] = 256 LP FILTER -3DB FREQUENCY, Y-AXIS [Hz] = NA LP FILTER -3DB FREQUENCY, Z-AXIS [Hz] = 256

Figure 10-8: Example of response from i f (INFORMATION on LP FILTER -3dB FREQUENCY) command

Figure 10-9: Example of response from i d (INFORMATION on DATAGRAM CONTENT)	command
>	
DATAGRAM FORMAT = STANDARD	
>i d	

```
>i t
BIT RATE [BPS] = 374400
DATA LENGTH = 8
STOP BITS = 1
PARITY = EVEN
```

Figure 10-10: Example of response from it (INFORMATION on TRANSMISSION PARAMETERS) command

STIM202 Multi-Axis Gyro Module

>i r LINE TERMINATION = ON

>

>

Figure 10-11: Example of response from i r (INFORMATION) command

>i u OUTPUT UNIT = [°/SAMPLE] – INCREMENTAL ANGLE

Figure 10-12: Example of response from i u (INFORMATION on OUTPUT UNIT) command

>i e GYRO X-AXIS I-CH OVERFLOW = FAILED

>

Figure 10-13: Example of response from i e (INFORMATION on LAST ERROR IN NORMAL MODE) command

10.2 a (SINGLE-SHOT MEASUREMENT) command

General description: Displays the result of latest measurement (measurement process running constantly in the background).

Table 10-6: Available a (SINGLE-SHOT MEASUREMENT) command

Syntax	Response
a <cr></cr>	Displays the result of the latest measurement sample

Table 10-7: Error messages for a (SINGLE-SHOT MEASUREMENT) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Any characters between command and <cr></cr>
	PARAMETERS	

>a X-AXIS = 1.43255°/S Y-AXIS = NA Z-AXIS = 243.33667°/S STATUS = 00000000 = OK

>

Figure 10-14: Example of response from a (SINGLE-SHOT MEASUREMENT) command

>a
X-AXIS = 0.000716275°
Y-AXIS = NA
Z-AXIS = 0.121668335°
STATUS = 00100101 = NOT OK
BIT 5: ABNORMAL INTERNAL TEMPERATURE
BIT 2: ERROR IN Z-CHANNEL
BIT 0: ERROR IN X-CHANNEL

Figure 10-15: Example of response from a (SINGLE-SHOT MEASUREMENT) command with error flagging

10.3 c (DIAGNOSTIC) command General description: Performs a diagnostic of the unit.

Table 10-8: Available c (DIAGNOSTIC) command

Syntax	Response
c <cr></cr>	Performs a diagnostic check

Table 10-9: Error messages for c (DIAGNOSTIC) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Any characters between command and <cr></cr>
	PARAMETERS	

DATASHEET

>c
SERIAL NUMBER = N25580846002002
PRODUCT = STIM202XZ
PART NUMBER = 83642-1034-0121 REV –
HW CONFIG = M5432 REV 0
FW CONFIG = SWD11691 REV 0
SYSTEM STATUS:
RAM CHECK = OK
FLASH CHECK = OK
STACK STATUS MONITOR = OK
STACK TEMPERATURE CONTROL = OK
STACK COMMAND HANDLER = OK
STACK SAMPLE = OK
STACK FLASH = OK
MICRO CONTROLLER TEMPERATURE = OK
VOLTAGE SUPPLIES:
REFERENCE VOLTAGE 5.0V = OK
REFERENCE VOLTAGE 2.5V = OK
REFERENCE VOLTAGE 2.048V = OK
REGULATED VOLTAGE 5.0V = OK
REGULATED VOLTAGE 1.8V = OK
INPUT VOLTAGE 5.0V = OK
VOLTAGE BOOST = OK
GYRO X-AXIS:
GYRO X-AXIS EXC.FREQ = OK
GYRO X-AXIS ASIC TEMP = OK
GYRO X-AXIS CONTROLLER SETPOINT DIFF = OK
GYRO X-AXIS SENSOR TEMP = OK
GYRO X-AXIS COMPENSATED RATE SIGNAL = OK
GYRO X-AXIS PWM = OK
GYRO X-AXIS CALCULATION OVERFLOW = OK
GYRO X-AXIS Q-CH RANGE = OK
GYRO X-AXIS I-CH RANGE = OK
GYRO X-AXIS DET.DC = OK
GYRO X-AXIS EXC.DC = OK
GYRO X-AXIS SPI = OK
GYRO X-AXIS EXC.AMPL = OK
GYRO X-AXIS OVERRUN = OK
GYRO Z-AXIS:
GYRO Z-AXIS EXC.FREQ = OK
GYRO Z-AXIS ASIC TEMP = OK
GYRO Z-AXIS CONTROLLER SETPOINT DIFF = NOK
GYRO Z-AXIS SENSOR TEMP = NOK
GYRO Z-AXIS COMPENSATED RATE SIGNAL = OK
GYRO Z-AXIS PWM = OK
GYRO Z-AXIS CALCULATION OVERFLOW = OK
GYRO Z-AXIS Q-CH RANGE = OK
GYRO Z-AXIS I-CH RANGE = OK
GYRO Z-AXIS DET.DC = OK
GYRO Z-AXIS EXC.DC = OK
GYRO Z-AXIS SPI = OK
GYRO Z-AXIS EXC.AMPL = OK
GYRO Z-AXIS OVERRUN = OK
>
Figure 10-16: Example of response from c (DIAGNO

Figure 10-16: Example of response from c (DIAGNOSTIC) command

10.4 d (DATAGRAM FORMAT) command

General description: Sets the datagram format in Normal Mode to either standard format, extended format or standard format w.CR+LF termination (ref.Figure 8-13, Figure 8-14 and Figure 8-15 respectively).

Table 10-10 : Available d (DATAGRAM FORMAT) command

Syntax	Response
d <sp><d_format><cr></cr></d_format></sp>	Changes the datagram format in Normal Mode

Table 10-11 : Allowed values for d (DATAGRAM FORMAT) command

<d_format></d_format>	Result
S	Changes the datagram format in Normal Mode to standard format
е	Changes the datagram format in Normal Mode to extended format
r	Changes the datagram format in Normal Mode to standard format with CR+LF
	termination

Table 10-12: Error messages for d (DATAGRAM FORMAT) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command
	PARAMETERS	and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

>d s

DATAGRAM FORMAT = STANDARD

>

Figure 10-17: Example of response from d s (DATAGRAM FORMAT) command

>d e DATAGRAM FORMAT = EXTENDED

Figure 10-18: Example of response from d e (DATATGRAM FORMAT) command

DATAGRAM FORMAT = STANDARD WITH <CR><LF> TERMINATION

>

>d r

Figure 10-19: Example of response from d t (DATATGRAM FORMAT) command

10.5 t (TRANSMISSION PARAMETERS) command

General description: Changes the transmission parameters for the RS422 interface.

Table 10-13 : Available t (TRANSMISSION PARAMETERS) commands

Syntax	Response
t <sp><bit rate=""><cr></cr></bit></sp>	Changes the transmission bit rate and leaves number of
	stop-bits and parity unchanged
t <sp><bit rate="">','<stop bits="">','<parity><cr></cr></parity></stop></bit></sp>	Changes the transmission bit rate, number of stop-bits
	and parity

Table 10-14: Allowed values for
 bit rate> parameter for t (TRANSMISSION PARAMETERS) commands

 bit rate>	Result
374400	Will set the bit rate to 374400 bits/s
460800	Will set the bit rate to 460800 bits/s
921600	Will set the bit rate to 921600 bits/s

Table 10-15: Allowed values for <stop bits> parameter for t (TRANSMISSION PARAMETERS) commands

<stop bits=""></stop>	Result
1	Will set number of stop bits to 1
2	Will set number of stop bits to 2

Table 10-16: Allowed values for <parity> parameter for t (TRANSMISSION PARAMETERS) commands

<stop bits=""></stop>	Result
n	Will set no parity
е	Will set even parity
0	Will set odd parity

Table 10-17: Error messages for t (TRANSMISSION PARAMETERS) commands

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command
	PARAMETERS	and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

>t 460800,2,e

TRANSMISSION PROTOCOL = 460800 BITS/S, 2 STOP BIT(S), EVEN PARITY

>

Figure 10-20: Example of response from t (TRANSMISSION PARAMETERS) command

Transmission parameters will change after the response as shown in Figure 10-20 has been given.

10.6 r (LINE TERMINATION) command

General description: Turns the line termination ON or OFF. Line termination should be ON when communicating point-point (single master – single slave).

Table 10-18: Available r (LINE TERMINATION) command

Syntax	Response
r <sp><lineterm><cr></cr></lineterm></sp>	Changes the line termination

Table 10-19: Allowed values for r (LINE TERMINATION) command

lineterm>	Result	
0	Turns line termination OFF	
1	Turns line termination ON	

Table 10-20: Error messages for r (LINE TERMINATION) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command
	PARAMETERS	and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

LINE TERMINATION = OFF

>

>

>r 0

Figure 10-21: Example of response from r 0 (LINE TERMINATION) command

>r 1 LINE TERMINATION = ON

Figure 10-22: Example of response from r 1 (LINE TERMINATION) command

ButterflyGyro[™]

STIM202 Multi-Axis Gyro Module

10.7 u (OUTPUT UNIT) command

General description: Sets the unit of the transmission in Normal Mode to angular rate or incremental angle.

Table 10-21: Available u (OUTPUT UNIT) command

Syntax	Response	
u <sp><outunit><cr></cr></outunit></sp>	Changes the unit of the transmission in Normal Mode	

Table 10-22: Allowed values for <outunit> for u (OUTPUT UNIT) command

<outunit></outunit>	Result	
а	Changes the unit of the transmission in Normal Mode to angular rate [°/s]	
i	Changes the unit of the transmission in Normal Mode to incremental angle [°/sample]	

Table 10-23: Error messages for u (OUTPUT UNIT) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command
	PARAMETERS	and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

>u a OUTPUT UNIT = [°/S] – ANGULAR RATE

>

Figure 10-23: Example of response from u a (OUTPUT UNIT) command

>u I OUTPUT UNIT = [°/SAMPLE] – INCREMENTAL ANGLE

Figure 10-24: Example of response from u i (OUTPUT UNIT) command

10.8 f (LP FILTER -3dB FREQUENCY) command

Table 10-24: Available f (LP FILTER -3dB FREQUENCY) commands

Syntax	Response
f <sp><-3dBfreq><cr></cr></sp>	Changes the LP filter -3dB frequency for all axes
f <sp><-3dBfreq>','<axis><cr></cr></axis></sp>	Changes the LP filter -3dB frequency for a specified axis

Table 10-25: Allowed values for <-3dBfreq> parameter for f (LP FILTER -3dB FREQUENCY) commands

<-3dBfreq>	Result	
16	Will change LP filter -3dB frequency to 16Hz	
33	Will change LP filter -3dB frequency to 33Hz	
66	Will change LP filter -3dB frequency to 66Hz	
131	Will change LP filter -3dB frequency to 131Hz	
262	Will change LP filter -3dB frequency to 262Hz	

Table 10-26: Allowed values for <axis> parameter for f (LP FILTER -3dB FREQUENCY) commands

<axis></axis>	Result
X	Will change LP filter -3dB frequency for X-axis only
У	Will change LP filter -3dB frequency for Y-axis only
Z	Will change LP filter -3dB frequency for Z-axis only

Table 10-27: Error messages for f (LP FILTER -3dB FREQUENCY) commands

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command
	PARAMETERS	and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

LP FILTER -3DB FREQUENCY = 66 HZ FOR X-AXIS

>

>f 66.x

Figure 10-25: Example of response from f (LP FILTER -3dB FREQUENCY) command

>f 131 LP FILTER -3DB FREQUENCY = 131 HZ FOR ALL AXES

>

Figure 10-26: Example of response from f (LP FILTER -3dB FREQUENCY) command

10.9 m (SAMPLING FREQUENCY) command

General description: Changes the sampling frequency in Normal Mode. The sampling frequency is the same for all gyro channels.

Table 10-28: Available m (SAMPLING FREQUENCY) command

Syntax	Response	
m <sp><sampl.freq><cr></cr></sampl.freq></sp>	Changes the sampling frequency in Normal Mode	

Table 10-29: Allowed values for <sampl.freq> parameter for m (SAMPLING FREQUENCY) command

<sampl.freq></sampl.freq>	Result	
125	Will set sampling frequency to 125 samples /second	
250	Will set sampling frequency to 250 samples /second	
500	Will set sampling frequency to 500 samples /second	
1000	Will set sampling frequency to 1000 samples /second	

Table 10-30: Error messages for m (SAMPLING FREQUENCY) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command
	PARAMETERS	and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

>m 500

SAMPLING FREQUENCY = 500 SAMPLES/S

>

Figure 10-27: Example of response from m (SAMPLING FREQUENCY) command

10.10 s (SAVE) command

General description: Saves configuration parameters to flash. This will permanently change the configuration parameters and hence be valid after an initialisation or power-off.

Table 10-31: Available s (SAVE) command

Syntax	Response
s <cr></cr>	Saves system parameters to flash. This command will require a confirmation prior to
	execution. Confirmation to be responded in upper case letter.

Table 10-32: Error messages for s (SAVE) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF PARAMETERS	Any characters between command and <cr></cr>
E003	INVALID PARAMETER	Value of parameter outside valid range
E004	EXCEEDED MAXIMUM NUMBER OF SAVES	Warning appears when maximum number of saves has been exceeded (1000 saves). STIM202 will always attempt to save the configuration when receiving the <u>s</u> (SAVE)-command.
E005	ERROR DURING SAVE	System parameters not successfully transferred to flash

>s SYSTEM PARAMETERS WILL BE PERMANENTLY CHANGED. CONFIRM SAVE(Y/N): Y SYSTEM PARAMETERS SUCCESSFULLY STORED IN FLASH. NUMBER OF SAVES = 26

Figure 10-28: Example of response from s (SAVE) command when confirming save

>s SYSTEM PARAMETERS WILL BE PERMANENTLY CHANGED. CONFIRM SAVE(Y/N): N SAVE COMMAND ABORTED.

Figure 10-29: Example of response from s (SAVE) command when not confirming save

SYSTEM PARAMETERS WILL BE PERMANENTLY CHANGED. CONFIRM SAVE(Y/N): y SAVE COMMAND ABORTED.

E003 INVALID PARAMETER

>

>s

Figure 10-30: Example of response from s (SAVE) command when not correctly responding to confirmation

10.11 x (EXIT) command

General description: Terminates Service Mode and returns to Normal Mode directly or via Init Mode (ref. Figure 8-3).

٦	Table 10-33 : Available x (EX	(IT) command

Syntax	Response
x <sp><exit_to><cr></cr></exit_to></sp>	Terminates Service Mode

Table 10-34 : Allowed values for <exit_to> for x (EXIT) command

<exit_to></exit_to>	Result	
n	Terminates Service Mode and return to Normal Mode. If system parameters have been changed compared to flash content, a confirmation is requested before exiting to Normal Mode ("Y" in upper case letter). There will be a 3 seconds hold-time between the transmitted command response and execution of the EXIT-command.	
i	Terminates Service Mode and return to Init Mode. If system parameters have been changed compared to flash content, a confirmation is requested before exiting to Normal Mode ("Y" in upper case letter). There will be a 3 seconds hold-time between the transmitted command response and execution of the EXIT-command. NB: Changes made to system parameters, but not saved, will be overwritten by the data already stored in flash when entering Init Mode.	
N	Terminates Service Mode and return immediately to Normal Mode (without confirmation if system parameters have been changed compared to flash and without any hold-time)	
	Terminates Service Mode and return immediately to Init Mode (without confirmation if system parameters have been changed compared to flash and without any hold-time). NB: Changes made to system parameters, but not saved, will be overwritten by the data already stored in flash when entering Init Mode.	

Table 10-35: Error messages for x (EXIT) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command
	PARAMETERS	and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

>x n SYSTEM RETURNING TO NORMAL MODE.

Figure 10-31: Example of response from x n (EXIT) command when system parameters match contents of flash

>x i SYSTEM RETURNING TO INIT MODE.

Figure 10-32: Example of response from x i (EXIT) command when system parameters match contents of flash

CURRENT SYSTEM PARAMETERS DO NOT MATCH FLASH CONTENT. CONFIRM EXIT(Y/N): Y SYSTEM RETURNING TO NORMAL MODE.

Figure 10-33: Example of response from x n (EXIT) command after system parameters have been changed but not saved with confirmed EXIT.

>x n

STIM202 Multi-Axis Gyro Module

CURRENT SYSTEM PARAMETERS DO NOT MATCH FLASH CONTENT. CONFIRM EXIT(Y/N): N

>

>x i

Figure 10-34: Example of response from x i (EXIT) command after system parameters have been changed but not saved with confirmed not to EXIT.

>x n

CURRENT SYSTEM PARAMETERS DOES NOT MATCH FLASH CONTENT. CONFIRM EXIT(Y/N): n

E003 INVALID PARAMETER

>

Figure 10-35: Example of response from x n (EXIT) command after system parameters have been changed but not saved with incorrect response to confirmation.

10.12 z (RESTORE TO FACTORY SETTINGS) command

General description: Restores the configuration of the unit to its factory settings.

Table 10-36: Available z (RESTORE TO FACTORY SETTINGS) commands

Syntax	Response
z <cr></cr>	Restores the configuration of the unit to its factory settings. NB: The restored configuration will not be permanent unless it is SAVEd to flash before EXITing Service Mode, resetting the unit or turning off power

Table 10-37: Error messages for z (RESTOR TO FACTORY SETTINGS) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Any characters between command and <cr></cr>
	PARAMETERS	
E003	INVALID PARAMETER	Value of parameter outside valid range

>z RESTORE TO FACTORY SETTINGS. CONFIRM CHANGE TO FACTORY SETTINGS (Y/N): Y

APPLYING FACTORY SETTINGS

FACTORY SETTINGS APPLIED. TO PERMANENTLY STORE THE SETTINGS, USE THE SAVE COMMAND.

>

Figure 10-36: Example of response from z (RESTORE TO FACTORY SETTINGS) command with no change in transmission parameters.

>z RESTORE TO FACTORY SETTINGS. CONFIRM CHANGE TO FACTORY SETTINGS(Y/N): Y TRANSMISSION PARAMETERS WILL BE CHANGED. PLEASE CONFIRM (Y/N): Y THE TRANSMISSION CONFIGURATION WILL BE CHANGED TO: TRANSMISSION PROTOCOL = 460800 BITS/S, 2 STOP BIT(S), EVEN PARITY APPLYING FACTORY SETTINGS FACTORY SETTINGS APPLIED. TO PERMANENTLY STORE THE SETTINGS, USE THE SAVE COMMAND.

Figure 10-37: Example of response from z (RESTORE TO FACTORY SETTINGS) command with change in transmission parameters.

>

ButterflyGyro

ТΜ

STIM202 Multi-Axis Gyro Module

10.13 ? (HELP) command

General description: Help function on the available commands in Service Mode.

Table 10-38: Available ? (HELP) commands

Syntax	Response
? <cr></cr>	Lists the available parameters for this command
? <sp><hlp><cr></cr></hlp></sp>	Responds with information on the specified command

Table 10-39: Allowed values for <hlp> for ? (HELP) command

<hlp></hlp>	Result	
i	Responds with information on the INFORMATION-command	
а	Responds with information on the SINGLE-SHOT MEASUREMENT-command	
С	Responds with information on the DIAGNOSTIC-command	
d	Responds with information on the DATAGRAM FORMAT-command	
t	Responds with information on the TRANSMISSION PARAMETERS-command	
r	Responds with information on the LINE TERMINATION-command	
u	Responds with information on the OUTPUT UNIT-command	
f	Responds with information on the LP FILTER -3dB FREQUENCY-command	
m	Responds with information on the SAMPLING FREQUENCY-command	
S	Responds with information on the SAVE-command	
x	Responds with information on the EXIT-command	
Z	Responds with information on the RESTORE TO FACTORY SETTINGS-command	

Table 10-40: Error messages for ? (HELP) commands

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF PARAMETERS	Too many or too few parameters, use of comma between command and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

>?	
AVAILABLE PARAMETERS:	
i: LISTS SPECIFIC INFORMATION	
a: PERFORMS A SINGLE-SHOT MEASUREMENT	
c: PERFORMS A DIAGNOSTIC OF THE UNIT	
d: CHANGES DATAGRAM FORMAT	
t : CHANGES TRANSMISSION PARAMETERS	
r: CHANGES THE LINE TERMINATION	
u : CHANGES OUTPUT UNIT	
f: CHANGES LP FILTER -3DB FREQUENCY	
m: CHANGES SAMPLING FREQUENCY	
s: SAVES CONFIGURATION DATA	
x: EXITS SERVICE MODE	
z: RESTORES FACTORY SETTINGS	
>	

Figure 10-38: Example of response from ? (HELP) command

ButterflyGyro

STIM202 Multi-Axis Gyro Module

>?i

i: LISTS THE PRODUCT CONFIGURATION DATA
is: RETURNS THE SERIAL NUMBER
in: RETURNS THE PRODUCT NAME
ix: RETURNS THE PART NUMBER
ih: RETURNS THE HW CONFIGURATION AND REVISION
ip: RETURNS THE FW CONFIGURATION AND REVISION
im: RETURNS THE SAMPLING FREQUENCY
if: RETURNS THE LP FILTER -3DB FREQUENCY
id: RETURNS THE DATAGRAM FORMAT
it: RETURNS THE TRANSMISSION PARAMETERS
ir: RETURNS THE LINE TERMINATION SETTING
iu: RETURNS THE OUTPUT UNIT
ie: PRINTS THE EXTENDED ERROR INFORMATION FROM THE LAST DETECTED ERROR IN NORMAL MODE

Figure 10-39: Example of response from ? i (HELP on INFORMATION) command

>? a a: PERFORMS A SINGLE-SHOT MEASUREMENT

Figure 10-40: Example of response from ? a (HELP ON SINGLE-SHOT MEASUREMENT) command

c: PERFORMS A DIAGNOSTIC OF THE UNIT

>

>? c

Figure 10-41: Example of response from ? c (HELP on DIAGNOSTIC) command

>? d

d s: CHANGES THE CONTENT OF THE DATAGRAMS IN NORMAL MODE TO NORMAL CONTENT d e: CHANGES THE CONTENT OF THE DATAGRAMS IN NORMAL MODE TO EXTENDED CONTENT

d r: CHANGES THE CONTENT OF THE DATAGRAMS IN NORMAL MODE TO NORMAL CONTENT W.CR+LF TERMINATION

>

Figure 10-42: Example of response from ? d (HELP on OUTPUT UNIT) command

>? t

t <bit rate>: Changes THE BIT RATE [BITS/S]

t <bit rate>','<stop bits>','<parity>: Changes THE BIT RATE [BITS/S], NUMBER OF STOP BITS AND PARITY

ALLOWED VALUES FOR
bit rate> = 374400 AND 460800
ALLOWED VALUES FOR <stop bits> = 1 AND 2

ALLOWED VALUES FOR sop bits = 1 / 100 2
ALLOWED VALUES FOR sop bits = 1 / 100 2
ALLOWED VALUES FOR sop bits = 1 / 100 2

>

Figure 10-43: Example of response from ? t (HELP on TRANSMISSION PARAMETERS) command

>? r r 0: Sets LINE TERMINATION TO OFF r 1: Sets LINE TERMINATION TO ON

Figure 10-44: Example of response from ? r (HELP on LINE TERMINATION) command

>? u u a: CHANGES OUTPUT UNIT TO ANGULAR RATE [°/S] u i: CHANGES OUTPUT UNIT TO INCREMENTAL ANGLE [°/SAMPLE]

Figure 10-45: Example of response from ? u (HELP on OUTPUT UNIT) command

STIM202 Multi-Axis Gyro Module

>? f

f <-3dBfreq>: CHANGES THE LP FILTER -3DB FREQUENCY [HZ] FOR ALL AXES f <-3dBfreq>','<axis>: CHANGES THE LP FILTER -3DB FREQUENCY [HZ] FOR A SPECIFIC AXIS ALLOWED VALUES FOR <-3dBfreq> = 16, 33, 66, 131 AND 262 ALLOWED VALUES FOR <axis> = x, y AND z

>

Figure 10-46: Example of response from ? f (HELP on LP FILTER -3dB FREQUENCY) command

>? m m <sampl.freq>: Changes THE SAMPLING FREQUENCY [SAMPLES/S] ALLOWED VALUES FOR <sampl.freq> = 125, 250, 500, AND 1000

>

Figure 10-47: Example of response from ? m (HELP on SAMPLING FREQUENCY) command

>? s

s: SAVES SYSTEM PARAMETERS TO FLASH

>

Figure 10-48: Example of response from ? s (HELP on SAVE) command

>? x

x n: EXITS SERVICE MODE AND RETURNS TO NORMAL MODE x i: EXITS SERVICE MODE AND RETURNS TO INIT MODE x N: EXITS SERVICE MODE AND RETURNS IMMEDIATELY TO NORMAL MODE x I: EXITS SERVICE MODE AND RETURNS IMMEDIATELY TO INIT MODE NB: NON-SAVED SYSTEM PARAMETERS WILL BE OVERWRITTEN BY STORED CONTENT IN FLASH WHEN EXITING TO INIT MODE

Figure 10-49: Example of response from ? x (HELP on EXIT) command

STIM202 Multi-Axis Gyro Module

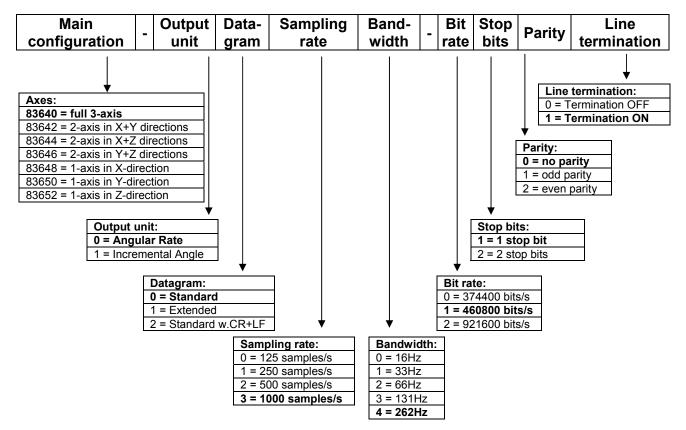

11 MARKING

Figure 11-1: Example of marking of STIM202

12 PART NUMBER / ORDERING INFORMATION

Configuration options in **bold** letters are the standard option.

Example: part number 83640-0032-1211 has the following configuration:

- X, Y and Z-axis
- Angular Rate Output [°/s]
- Standard Datagram
- o 1000 samples/s
- -3dB bandwidth = 66Hz
- Bit rate = 460800 bits/s
- o 2 stop bits
- o Odd parity
- Line termination ON

ButterflyGyro

ТΜ

STIM202 Multi-Axis Gyro Module

NOTES

Information furnished by SensoNor Technologies is believed to be accurate and reliable. However, no responsibility is assumed by SensoNor Technologies for its use, nor for any infringements of patents or other rights of third parties that may result from its use. SensoNor Technologies reserves the right to make changes without further notice to any products herein. SensoNor Technologies makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SensoNor Technologies assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. No license is granted by implication or otherwise under any patent or patent rights of SensoNor Technologies products could create a situation where personal injury or death may occur. Should Buyer purchase or use SensoNor Technologies and linethold for any application in which the failure of the SensoNor Technologies product could create a situation where personal injury or death may occur. Should Buyer purchase or use SensoNor Technologies and itsributors harmless adgrainst all claims, costs, damages, and expenses, and reasonable legal fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SensoNor Technologies was negligent regarding the design or manufacture of the part.

Sensonor Technologies AS

Phone: +47 3303 5000 - Fax: +47 3303 5005 sales@sensonor.no <u>www.sensonor.com</u>