1 FEATURES

- Excellent performance in vibration and shock environments
- o 1, 2 or 3 axes offered in same package
 - Electronically calibrated axis alignment
- Single-crystal silicon technology
- o Low bias drift
- Low noise
- Standard high-level RS422 interface
- Fully configurable:
 - 5 different sampling rates
 - 5 different bandwidths
 - LP filter -3dB frequency can be set individually for each axis
 - RS422 protocol, bit rate and line termination
 - Selectable output unit: angular rate [deg/s], incremental angle [deg], average angular rate [deg/s] or integrated angle [°]
- Excellent environmental robustness
- Miniature package
- Continuous self-diagnostics

2 GENERAL DESCRIPTION

STIM202 is a cluster of 1, 2 or 3 high accuracy MEMS-based gyros in a miniature package. Any configuration of axes can be provided. Each axis is factory-calibrated for bias, sensitivity and compensated for temperature effects to provide high-accuracy measurements in the temperature range -40°C to +85°C. The unit runs off a single +5V supply.

(Actual size)

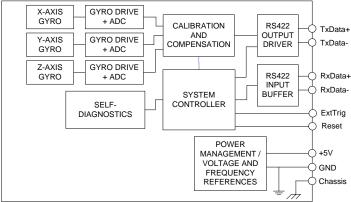


Figure 2-1: STIM202 FUNCTION BLOCK DIAGRAM

STIM202 communicates via a standard high-level RS422 interface. The use of a 32 bit RISC ARM microcontroller provides flexibility in the configuration, like choice of output unit, sample rate, LP filter -3dB frequency and RS422 bit-rate and protocol parameters. All configurable parameters can be defined when ordering or set by customer.

When STIM202 is powered up, it will perform an internal system check and synchronise the gyros. As an acknowledgement of the complete power-up sequence, it will provide special datagrams containing data, like part number, serial number, number of active axis and configuration parameters as mentioned above. STIM202 will then automatically proceed to provide measurement data. Hence the simplicity of use is high: just connect power and STIM202 will provide accurate gyro measurements over the RS422 interface.

The measurement data is transmitted as packages of data on a fixed format (datagram) at intervals given by the sample rate. The datagram is in binary coded format in order to have an efficient transfer of data. In addition to the measurement data itself, the datagram contains an identifier, a status byte and a CRC (Cyclic Redundancy Check) byte to provide high degree of fault detection in the transmissions. The status byte will flag any detected errors in the system.

For more advanced users, the gyro may be put in Service Mode. In this mode all the configuration parameters can be intermediately or permanently changed by overwriting the current settings in the flash memory. In Service Mode the commands and responses are in a human readable format; to enable the use of terminal-type software during typical product integration. Service Mode also provides the ability to perform single measurements, perform diagnostics and obtain a higher detail level of detected errors reported in the status byte.

Sensonor Technologies AS

Phone: +47 3303 5000 - Fax: +47 3303 5005 sales@sensonor.no <u>www.sensonor.com</u>

ButterflyGyro [™] STIM202 Multi-Axis Gyro Module

TABLE OF CONTENTS

	ATURES	
2 GE	ENERAL DESCRIPTION	· · · · · · · · · · · · · · · · · · ·
3 TA	BLE OF CONTENTS	
4 AB	BREVIATIONS USED IN DOCUMENT	
5 AB	SSOLUTE MAXIMUM RATINGS	
	PECIFICATIONS	
6.1		(
	I.1 Bias Instability	
6.1	·	
6.1		
6.1	, and the state of	
6.2	Configurable parameters	
6.3	Datagram specifications	
6.4	Status byte	
	ECHANICAL	
7.1	Mechanical dimensions	
7.2	Pin configuration	
7.3	Definition of axes	
	NSIC OPERATION	
8.1	Reset	
8.2	Operating modes	
	2.1 Init Mode	
	2.2 Normal Mode	
	2.3 Service Mode	
8.3	Self diagnostics	
9 CC	DMMANDS IN NORMAL MODE	2
9.1	N (PART NUMBER DATAGRAM) command	2
9.2	I (SERIAL NUMBER DATAGRAM) command	2
9.3	C (CONFIGURATION DATAGRAM) command	2
9.4	R (RESET) command	2
9.5	SERVICEMODE command	2
10	COMMANDS IN SERVICE MODE	2
10.1	i (INFORMATION) command	2
10.2		
10.3	c (DIAGNOSTIC) command	
10.4	d (DATAGRAM FORMAT) command	
10.5	t (TRANSMISSION PARAMETERS) command	
10.6	r (LINE TERMINATION) command	
10.7	u (OUTPUT UNIT) command	
10.8	f (LP FILTER -3dB FREQUENCY) command	3(
10.9	m (SAMPLE RATE) command	
10.10		
10.10		
10.12		
10.12		
	MARKING	
	PART NUMBER / ORDERING INFORMATION	
12	FAKT NUMBER / UKDEKING INFURMATION	4

ABBREVIATIONS USED IN DOCUMENT

ABBREVIATION	FULL NAME
LSB	Least Significant Byte
MSB	Most Significant Byte
lsb	Least significant bit
LP filter	Low-Pass filter
CIC-filter	Cascaded Integrator Comb filter

STIM202 Multi-Axis Gyro Module

5 ABSOLUTE MAXIMUM RATINGS

Stresses beyond those listed in Table 5-1 may cause permanent damage to the device.

Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Table 5-1: Absolute maximum ratings

Parameter	Rating	Comment
Dynamic overload	5000°/s	Any direction
Mechanical shock	1500g/0.5ms half-sine	Any direction
ESD human body model	±2kV	
ESD charge device model	±500V	
Storage temperature	-50°C to +90°C	
VSUP to GND	-0.5 to +7V	
RxD+ or RxD- to GND	-0.3V to +7V	
RxD+ to RxD-	±6V	with 120Ω Line Termination = ON
TxD+ or TxD- to GND	VCC-15V to +15V	
NRST to GND	-0.3V to +7V	
EXTTRIG to GND	-0.3V to +3.6V	
Chassis to GND	500V	

6 SPECIFICATIONS

Table 6-1: Operating conditions

Parameter	Conditions	Min	Nom	Max	Unit	Note
INPUT RANGE			±400		°/s	
POWER SUPPLY		4.5	5.0	5.5	V	
OPERATING TEMPERATURE		-40		+85	°C	

ButterflyGyro [']

STIM202 Multi-Axis Gyro Module

Table 6-2: Functional specifications

Parameter	Conditions	Min	Nom	Max	Unit	Note
GYRO	COHUILIONS	IVIIII	NOIII	IVIAX	Offic	MOLE
			±400		°/s	1
Full Scale (FS) Resolution			±400 24		bits	'
Resolution			2 ⁻¹⁴		°/s	
Cools Factor Assurant			±0.2		/S %	
Scale Factor Accuracy			±0.2 200			2
Non-Linearity over ±200°/s					ppm	2
Bandwidth (-3dB)			262		Hz	3
Group Delay	Def: Figure 0.4	0.00	1.6	0.70	ms	4
Compensation time, t _{comp}	Ref: Figure 8-4	0.68	0.73	0.78	ms °/h	5
Bias Accuracy	AT 400/m-in	-250	0	+250	-	
Bias error over temperature	ΔT < ±1°C/min		30		°/h rms °/h	
Bias Instability	Root Allan Variance @25°C		0.5		711	
Angular Dandom Walk	Root Allan Variance		0.2		°/√hr	
Angular Random Walk			0.2		7 1111	
Linear Acceleration Effect	@25°C			18	°/b /c	
	f <1000H=		0.4	ΙŎ	°/h /g °/h /g²	
Vibration Rectification Coefficient	f<1000Hz		0.1		°/h /g² _{rms}	
MISALIGNMENT			E		mred	6
STIM202X,Y,Z (1 axis version)			5		mrad	6
STIM202XY,XZ,YZ (2 axis version)			5		mrad	6
STIM202 (3 axis version)			1		mrad	6
TEMPERATURE MEASUREMENT	@3500				00	_
Bias Accuracy	@25°C		±5		°C	7
Scale factor accuracy			±5		%	
POWER CONSUMPTION				1 E	\	
Power consumption				1.5	W	
TIMING Time to transmit ofter Dever On				4		
Time to transmit after Power-On				1	S	8
Time to transmit after Reset				1	S	9
Start-Up Time			rof Toble C o	10	S	10
RS422 Bit-Rate			ref. Table 6-3	. 1	%	
RS422 Bit-Rate Accuracy				±1 1000		3
Sampling Rate					samples/s %	3
Sampling Rate Accuracy RS422 PROTOCOL				±1	70	
			4		hit	
Start Bit			1		bit bits	
Data Length			8 rof Toblo 6 2		DIIS	2
Parity			ref. Table 6-3			3
Stop Bits			ref. Table 6-3			3
RS422 LINE TERMINATION	Line termination = ON		400			
Input resistance		40	120		Ω	
Input resistance	Line termination = OFF	48	125		kΩ	
RESET (NRST PIN)		EV 011	00 ! ***			
Logic levels		_	OS and TTL con	npatible		
Minimum hold time for reset		5	400		ms	
Pull-Up Resistor		80	100		kΩ	
EXTERNAL TRIGGER		0.017.05	100 - LTT			
Logic levels			1OS and TTL co			
Trigger			legative transitio	n	1.0	
Pull-Up Resistor	D. C. Eliza de C. C.	35	50		kΩ	
Minimum active low, t _{ext_min}	Ref: Figure 8-4	50		050	ns	
Maximum time to transmit, t _{ext_tx}	Ref: Figure 8-4			250	μs	
Time between triggers	Measurement.unit:					
	angular rate	1		8	ms	
	incremental angle	1		8	ms	11
	average rate	1		250	ms	11
	integrated angle	1		16	ms	11

CHASSIS				
Resistance pin 6 → chassis		0.1	Ω	
Isolation chassis → GND (pin1)	100		ΜΩ	

- Note 1: Output is monotonous and will saturate at ±480°/s
- Note 2: Largest deviation from BSL (Best Straight Line) over the range specified.
- Note 3: Bandwidth can be configured, ref. Table 6-3
- Note 4: Specified group delay is valid for a filter setting = 262Hz. See Table 6-3 to find group delay for other filter-settings.
- Note 5: Time to transfer data from gyro-channels to μ C, perform compensation and prepare for datagram transmission. Total delay to start of datagram transmission = group delay + compensation time.
- Note 6: Ref. Figure 6-1 for definition of reference points used in axes alignment.
- Note 7: Temperature calibrated to reflect ambient temperature and not internal temperature. Temperature error during first 5 minutes: -20°C to +5°C
- Note 8: Time from Power-On to start of datagram transmissions (starting with part number datagram)
- Note 9: Time from Reset release to start of datagram transmissions (starting with part number datagram)
- Note 10: Time from Power-On or Reset to the reset of the Start-Up bit (Bit 6 in the STATUS byte ref. Table 6-8). During this period the output data should be regarded as non-valid.
- Note 11: If time between triggers is longer, overload may occur even if the unit is operated within operating range.

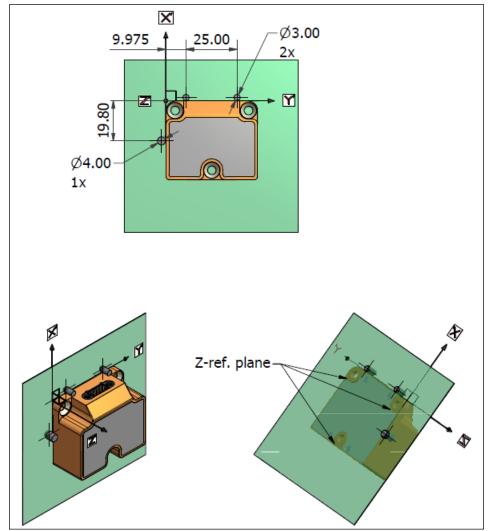


Figure 6-1: Reference points for alignment of axes

6.1 TYPICAL PERFORMANCE CHARACTERISTICS

6.1.1 Bias Instability

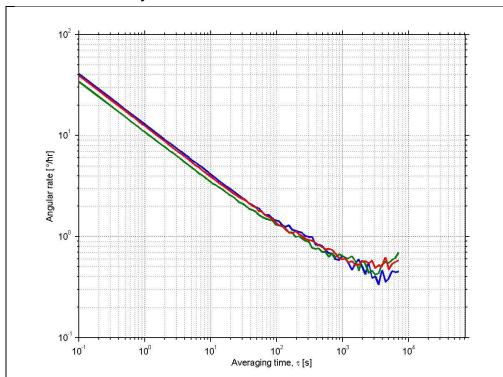


Figure 6-2: Typical Root Allan-Variance plot

6.1.2 Initial bias drift

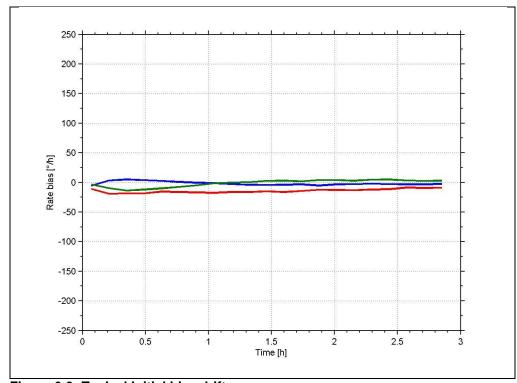


Figure 6-3: Typical initial bias drift

6.1.3 Non-Linearity

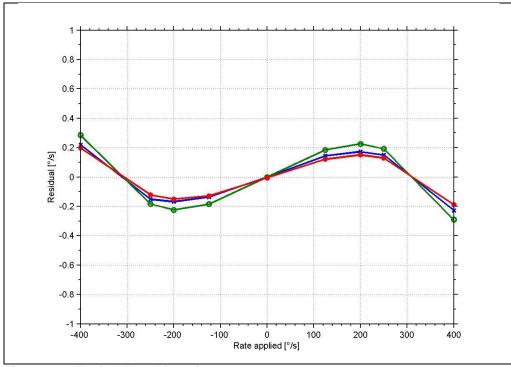


Figure 6-4: Typical Non-Linearity

6.1.4 Frequency characteristics

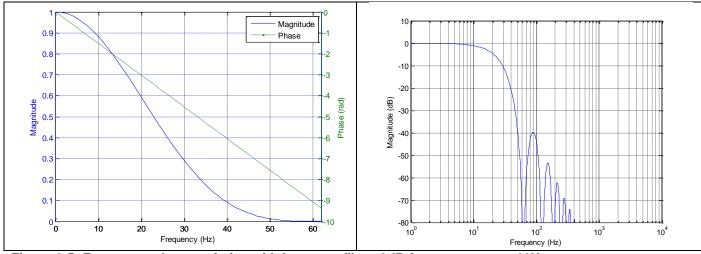


Figure 6-5: Frequency characteristics with low-pass filter -3dB frequency set to 16Hz

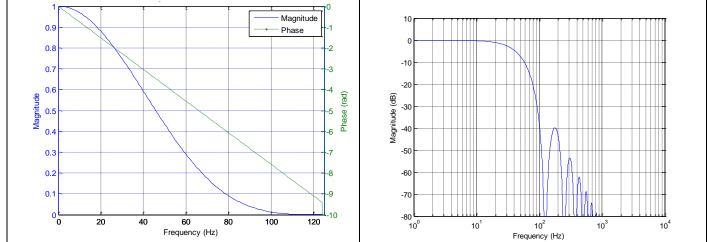


Figure 6-6: Frequency characteristics with low-pass filter -3dB frequency set to 33Hz

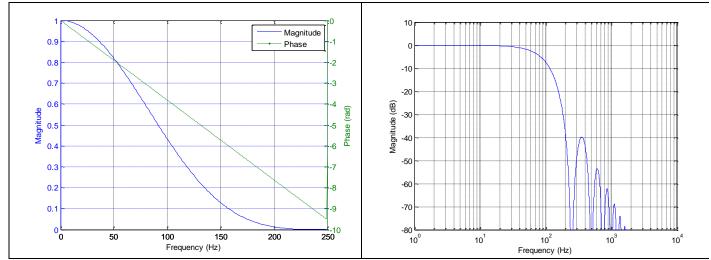


Figure 6-7: Frequency characteristics with low-pass filter -3dB frequency set to 66Hz

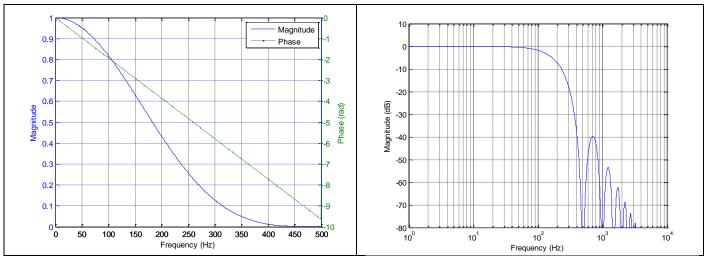


Figure 6-8: Frequency characteristics with low-pass filter -3dB frequency set to 131Hz

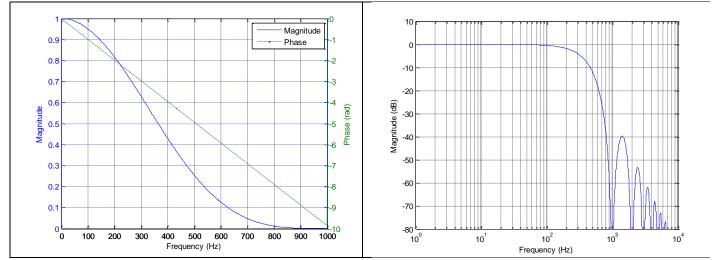


Figure 6-9: Frequency characteristics with low-pass filter -3dB frequency set to 262Hz

TS1439 rev.8 9/45 March 2011

ButterflyGyro ¹

STIM202 Multi-Axis Gyro Module

6.2 Configurable parameters

Table 6-3: Configurable parameters

Parameter	Configurations		Comments
DATAGRAM FORMAT	Standard		Contains measurements and status byte
	Extended		For future use
	Standard with CF	R+LF	Has <cr><lf> added to standard datagram</lf></cr>
	Rate and tempera	ature	
	Rate and counter		
	Rate and latency		
	Rate, temperatur		
	Rate, temperature		
MEASUREMENT UNIT	Angular rate [°/s]		
	Incremental angle		
	Average angular		
	Integrated angle	<u>[°]</u>	
SAMPLING RATE	125 samples/s		
	250 samples/s		
	500 samples/s		
	1000 samples/s		
	External trigger	Creum deles	
LOW DACC FILTED 24D	-3db freq.:	Group delay:	Low page filters are CIC type filters
LOW-PASS FILTER -3dB	16Hz	23.4ms	Low-pass filters are CIC type filters. Filter settings can be set individually for each
FREQUENCY	33Hz 66Hz	11.7ms	axis in Service Mode.
	131Hz	5.9ms	Total delay to start of datagram transmission =
	_	3.0ms	group delay + compensation time, t _{comp}
RS422 BIT RATE	262Hz 374400 bits/s	1.6ms	group delay i compensation time, t _{comp}
RS422 BIT RATE			
	460800 bits/s 921600 bits/s		
RS422 PARITY	None		
K3422 FARITI	Odd		
	Even		
RS422 STOP BITS	1 stop bit		
N3422 31UF BIT3			
RS422 120Ω LINE	2 stop bits OFF		
TERMINATION	ON		
ILINIMATION	UN		

Refer to chapter 12 for information on how to configure STIM202 when ordering.

ButterflyGyro[™]

STIM202 Multi-Axis Gyro Module

6.3 Datagram specifications

Table 6-4: Specification of the Part Number datagram

Byte#		<u> </u>		Bi	t#				Specification					
_	7	6	5	4	3	2	1	0						
									Part Number datagram identifier:					
0	0	1	0	1	0	1	0	0	0x54 for datagrams without CR+LF termination					
	0	1	0	1	0	1	1	0	0x56 for standard datagrams w.CR+LF					
1	0	0	0	0	P1 ₃	P1 ₂	P1 ₁	P1 ₀	Low nibble: 1.digit (BCD) of part number					
2	P2 ₃	P2 ₂	P2 ₁	P2 ₀	P3 ₃	P3 ₂	P3 ₁	P3 ₀	High nibble: 2.digit (BCD) of part number					
	1 23	1 42	1 21	1 20	1 33	1 32	1 31	1 30	Low nibble: 3.digit (BCD) of part number					
3	P4 ₃	P4 ₂	P4 ₁	P40	P5 ₃	P5 ₂	P5₁	P5 ₀	High nibble: 4.digit (BCD) of part number					
_	Ů	1 72	1 71	Ů	1 03	1 32			Low nibble: 5.digit (BCD) of part number					
4	0	0	1	0	1	1	0	1	ASCII character "-" (0x2D)					
5	P6 ₃	P6 ₂	P6₁	P6 ₀	P7 ₃	P7 ₂	P7 ₁	P7 ₀	High nibble: 6.digit (BCD) of part number					
	1 03	1 02	1 0	. 00	1 73	1 7 2	. , ,	. 70	Low nibble: 7.digit (BCD) of part number					
6	P8 ₃	P8 ₂	P8₁	P8₀	P9 ₃	P9 ₂	P9₁	P9₀	High nibble: 8.digit (BCD) of part number					
	Ů	_	1 01	Ů	1 03	1 02		. 00	Low nibble: 9.digit (BCD) of part number					
7	0	0	1	0	1	1	0	1	ASCII character "-"(0x2D)					
8	P10°	P10°	P104	P10 ₀	P11a	P11a	P114	P11 ₀	High nibble: 10.digit (BCD) of part number					
	1 103	1 102	1 10	1 100	1 113	1 112	,		Low nibble: 11.digit (BCD) of part number					
9	P11 ₂	P11 ₂	P11 ₄	P11 ₀	P13 ₂	P13 ₂	P13₁	P13 ₀	High nibble: 12.digit (BCD) of part number					
	1 113	1 112	,		1 103	1 102	1 10	1 100	Low Hibbie. 13.digit (BCD) of part humber					
10	r ₇	r ₆	r ₅	r₄	r ₃	\mathbf{r}_2	r ₁	\mathbf{r}_{0}	Part number revision. Content of byte represents the ASCII character of the revision.					
	.,	16	15	-4	13	12	.,	.0	Numbering sequence: "-", "A", "B",, "Z"					
									Cyclic Redundancy Check is performed on all preceding bytes and is generated from the					
11	C ₇	C 6	C 5	C ₄	C ₃	C ₂	C ₁	C ₀	polynomial:					
(1.5)									$x^{8} + x^{2} + x + 1$, seed = 0xFF					
(12)	0	0	0	0	1	1	0	1	<cr> only when standard datagrams w.CR+LF have been chosen</cr>					
(13)	0	0	0	0	1	0	1	0	<lf> only when standard datagrams w.CR+LF have been chosen</lf>					

Table 6-5: Specification of the Serial Number datagram

	, , , , ,	Oper	,ou				.a1	4.11DC	datagram
Byte#				Bi	t#		1	1	Specification
	7	6	5	4	3	2	1	0	
									Serial Number datagram identifier:
0	0	1	0	1	1	0	1	0	0x5A for datagrams without CR+LF termination
	0	1	0	1	1	0	0	0	0x5C for standard datagrams w.CR+LF
1	0	1	0	0	1	1	1	0	ASCII character for letter "N"
2	S1 ₃	S1 ₂	S1 ₁	S1 ₀	S2 ₃	S2 ₂	S2 ₁	S2 ₀	High nibble: 1.digit (BCD) of serial number
	313	312	311	310	323	322	321	320	Low nibble: 2.digit (BCD) of serial number
3	S3 ₃	S3 ₂	S3 ₁	S3 ₀	S4 ₃	S4 ₂	S4 ₁	S4 ₀	High nibble: 3.digit (BCD) of serial number
3	5 53	3 32	ეე ე	3 30	54 3	342	5 41	5 40	Low nibble: 4.digit (BCD) of serial number
4	S5 ₃	S5 ₂	S5 ₁	S5 ₀	S6 ₃	S6 ₂	S6₁	S6 ₀	High nibble: 5.digit (BCD) of serial number
4	3	552	5	50	3 03	302	501	50	Low nibble: 6.digit (BCD) of serial number
5	S7 ₃	S7 ₂	S7 ₁	S7 ₀	S8 ₃	S8 ₂	S8 ₁	S8 ₀	High nibble: 7.digit (BCD) of serial number
J	3/3	372	371	370	3 03	302	3 0 ₁	300	Low nibble: 8.digit (BCD) of serial number
6	S9 ₃	S9 ₂	S9 ₁	S9 ₀	S10.	S10 ₂	S10.	S10 ₀	High nibble: 9.digit (BCD) of serial number
0	093	392	001	390	5 103	3102	3101	5100	Low nibble: 10.digit (BCD) of serial number
7	S11.	S11.	S11.	S11.	S11.	S11 ₂	S11.	S11 ₀	High nibble: 11.digit (BCD) of serial number
,	3113	3112	3111	3110	3113	3112	3111	3110	Low hibbie. 12.digit (BCD) of serial humber
8	S13.	S13 ₀	S13,	S13 ₀	S14.	S14 ₂	S14.	S14°	High nibble: 13.digit (BCD) of serial number
	5153	0102	3 131	3130	5143	3142	O 141	5140	Low hibbie. 14.digit (BCD) of serial number
9	Х	Х	Х	Х	Х	Х	Х	Х	For future use.
10	Х	Х	Х	Х	Х	Х	Х	Х	For future use.
									Cyclic Redundancy Check is performed on all preceding bytes and is generated from the
11	C ₇	C ₆	C ₅	C_4	C ₃	C ₂	C ₁	\mathbf{c}_0	polynomial:
									$x^{8} + x^{2} + x + 1$, seed = 0xFF
(12)	0	0	0	0	1	1	0	1	<cr> only when standard datagrams w.CR+LF have been chosen</cr>
(13)	0	0	0	0	1	0	1	0	<lf> only when standard datagrams w.CR+LF have been chosen</lf>

TS1439 rev.8 11/45 March 2011

ButterflyGyro["]

STIM202 Multi-Axis Gyro Module

Table 6-6: Specification of the Configuration datagram

System S		<i>.</i> Op	CO	outio			omig	jarati	011 0	Specification
	вуте#	7	ء ا	l e		i	۱ ၁	4	۱.	эреспісаціон
0	}		0	3	4	<u> </u>		<u> </u>	U	Configuration datagram identifier:
1	0	0	_	1	_	4	0	_	0	
1	U	_								
1		U	U	'	0	'	0	<u>'</u>	'	
2	1	r_7	r ₆	r ₅	r ₄	r ₃	\mathbf{r}_2	r ₁	\mathbf{r}_0	
3	2	f_	f.	f_	f.	f.	f.	f.	f.	
			-							
		117	116	115	114	113	112	111	110	
1		0	Y	v	v	v	¥	v	Y	•
X										
X										
X				-						
			-							
4			-		-					
X	4		-	-						
X	-		-	_	-					
X			Х	х		1	х			Y-axis is active
X										
X							0	1	1	
X		х	х	х	х	х	0	1	0	
		х	Х	х	х	х	0	0	1	LP filter -3dB frequency for Y axis = 33Hz
		х	Х	х	х	х	0	0	0	
0										
X		0	Х	х	х	х	х	х	х	•
X										
X		х	1	0	0	х	х	х	х	LP filter -3dB frequency for X axis = 262Hz
S		х	0	1	1	х	х	х	х	
5		х	0	1	0	х	х	х	х	LP filter -3dB frequency for X axis = 66Hz
X		х	0	0	1	х	х	х	х	LP filter -3dB frequency for X axis = 33Hz
X	5	х	0	0	0	х	х	х	х	LP filter -3dB frequency for X axis = 16Hz
X		х	Х	х	х	1	0	1	х	
X		х	Х	х	х	0	1	1	х	Sample rate = 1000 samples/s
X		х	Х	х	х	0	1	0	х	Sample rate = 500 samples/s
X		х	Х	х	х	0	0	1	х	Sample rate = 250 samples/s
X		Х	Х	х	х	0	0	0	Х	Sample rate = 125 samples/s
		х	Х	х	Х	Х	х	х	0	Output unit = ANGULAR RATE
0		Х	Х	х	х	х	х	х	1	Output unit = other than ANGULAR RATE (ref. byte#8)
1										System configuration, Byte 3:
X		0	Х	х	х	х	х	х	х	
X		1	Х	х	х	х	х	х	х	Datagram format = other than STANDARD (ref. byte#8)
Stop		х	0	0	0	Х	х	х	х	Bit rate = 374400 bits/s
6		х	0	0	1	х	х	х	х	Bit rate = 460800 bits/s
X		х	0	1	0	Х	Х	х	х	Bit rate = 921600 bits/s
X	6	Х	Х	х	Х	0	Х	х	Х	Stop bit = 1
X		х	Х	х	Х	1		х	х	
X		Х	Х	х	Х	х	_	-	Х	
X										
X								_		
7									_	
System configuration, Byte 4: Output unit = ANGULAR RATE Output unit = ANGULAR RATE Output unit = INCREMENTAL ANGLE Output unit = INTEGRATE Output unit = INTEGRATE									_	
0	7	S ₇	S ₆	S ₅	S ₄	S ₃	S ₂	S ₁	S ₀	
0										
0		0	0	0	0	Х	Х	Х	Х	Output unit = ANGULAR RATE
0		0	0	0	1	Х	Х	Х	Х	Output unit = INCREMENTAL ANGLE
0		0	0	1	0	х	Х	х	х	Output unit = AVERAGE ANGULAR RATE
X			_	I -	_					· ·
8 x		-	-							· '
X						_	_	_	_	
x x	ď					_	_	_		, and the second
x x		Х	Х	Х	Х	_	_			I
x x		Х	Х	Х	Х	0	0	1	1	Datagram format = Rate and temperature,
x x		Х	Х	Х	Х	0	1	0	0	Datagram format = Rate and counter,
x x		х	х	х	х	0	1	0	1	
x x						_				,
9 x						_				, ,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, ,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
(12)	10	Х	Х	Х	Х	Х	Х	Х	Х	
(12) 0 0 0 0 1 1 0 1 cR> only when standard datagrams w.CR+LF have been chosen	11	C7	Ca	C ₅	C ₄	C2	Сo	C ₁	Co	Cyclic Redundancy Check is performed on all preceding bytes and is
										generated from the polynomial: $x^{\circ} + x^{\prime} + x + 1$, seed = 0xFF
(13) 0 0 0 1 0 1 0 <lf> only when standard datagrams w.CR+LF have been chosen</lf>										
	(13)	0	0	0	0	1	0	1	0	<lf> only when standard datagrams w.CR+LF have been chosen</lf>

ButterflyGyro [™] STIM202 Multi-Axis Gyro Module

Tab	Table 6-7: Specification of the Normal Mode datagram															
	Byte#								1	1	Bit	#	Specification			
Standard datagram	Extended datagram	Standard datagram w.CR+LF	Rate and temperature	Rate and counter	Rate and latency	Rate, temperature and counter	Rate, temperature and latency	7	6	5	4	3	2	1	0	
																Normal Mode datagram identifier:
								1 1 1	0 0 0 0	0 0 0 1	1 1 1 0	0 0 0 0	0 0 0 0	0 1 1 0	0 0 1 0	0x90 standard datagram 0x92 extended datagram 0x93 standard datagram w. CR+LF 0xA0 datagram with rate and temperature
0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	0	0xA2 datagram with rate and counter
								1	0	1	0	0	1	0	0	0xA4 datagram with rate and latency
								1	0	0	1	1	0	0	1	0x99 datagram with rate, temperature and counter
								1	0	1	0	0	1	1	0	0xA6 datagram with rate, temperature and latency
1	1	1	1	1	1	1	1	X ₂₃	X ₂₂	X ₂₁	X ₂₀	X 19	X ₁₈	X ₁₇	X ₁₆	X axis gyro output. Ref. chapter
2	2	2	2	2	2	2	2	X ₁₅	X ₁₄	X ₁₃	X ₁₂	X ₁₁	X ₁₀	X 9	X ₈	8.2.2.3 for conversion to units
3	3	3	3	3	3	3 4	3	X ₇	X ₆	X ₅	X ₄	X ₃	X ₂	X ₁	X ₀	
5	5	5	5	5	5	5	5	y ₂₃ y ₁₅	У ₂₂ У ₁₄	y ₂₁ y ₁₃	y ₂₀ y ₁₂	У ₁₉ У ₁₁	y ₁₈ y ₁₀	y ₁₇	y ₁₆	Y axis gyro output. Ref. chapter
6	6	6	6	6	6	6	6	y ₇	y ₆	y ₅	y ₄	y ₃	y ₂	y ₁	y ₀	8.2.2.3 for conversion to units
7	7	7	7	7	7	7	7	Z ₂₃	Z ₂₂	Z ₂₁	Z ₂₀	Z ₁₉	Z ₁₈	Z ₁₇	Z ₁₆	Z axis gyro output. Ref. chapter
8	8	8 9	8 9	8	8 9	8 9	8 9	Z ₁₅	Z ₁₄	Z ₁₃	Z ₁₂	Z ₁₁	Z ₁₀	Z 9	Z ₈	8.2.2.3 for conversion to units
10	10	10	10	10	10	10	10	Z ₇	Z ₆	Z ₅ S ₅	Z ₄	Z ₃	Z ₂ S ₂	Z ₁ S ₁	S ₀	STATUS byte. Ref.Table 6-8 for specification of this byte.
N/A	11	N/A	N/A	N/A	N/A	N/A	N/A	Х	Х	Х	Х	Х	Х	Х	Х	For future use.
N/A	12	N/A	N/A	N/A	N/A	N/A	N/A	Х	Х	Х	Х	Х	Х	Х	Х	For future use.
N/A	13	N/A N/A	N/A	N/A N/A	N/A N/A	N/A	N/A 11	X	X	X	X	X	X	X	X	For future use.
N/A N/A	N/A N/A	N/A N/A	11 12	N/A	N/A	11 12	12	Tx ₁₅	Tx ₁₄	Tx ₁₃	Tx ₁₂	Tx ₁₁	Tx ₁₀	Tx ₉	Tx ₈	X axis temperature data. Ref. chapter 8.2.2.3.5 for conversion to units
N/A	N/A	N/A	13	N/A	N/A	13	13	Ty ₁₅	Ty ₁₄	Ty ₁₃	Ty ₁₂	Ty ₁₁	Ty ₁₀	Ty ₉	Ty ₈	Y axis temperature data. Ref. chapter
N/A	N/A	N/A	14	N/A	N/A	14	14	Ty ₇	Ty ₆	Ty₅	Ty ₄	Ty ₃	Ty ₂	Ty₁	Ty ₀	8.2.2.3.5 for conversion to units
N/A	N/A	N/A	15	N/A	N/A	15	15	Tz ₁₅	Tz ₁₄	Tz ₁₃	Tz ₁₂	Tz ₁₁	Tz ₁₀	Tz ₉	Tz ₈	Z axis temperature data. Ref. chapter
N/A	N/A	N/A	16	N/A	N/A	16	16	Tz ₇	Tz ₆	Tz ₅	Tz ₄	Tz ₃	Tz ₂	Tz ₁	Tz ₀	8.2.2.3.5 for conversion to units
N/A N/A	N/A	N/A N/A	N/A N/A	11 N/A	N/A 11	17 N/A	N/A 17	n ₇	n ₆	n ₅	n ₄	n ₃	n ₂	n ₁	n ₀	Counter. Ref. chapter 8.2.2.3.6 Latency. Ref. chapter 8.2.2.3.7 for
N/A N/A	N/A N/A	N/A	N/A N/A	N/A	12	N/A	18	I ₁₅	I ₁₄	I ₁₃	I ₁₂	I ₁₁	I ₁₀	l ₉	I ₈	conversion to units.
11	14	11	17	12	13	18	19	C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀	Cyclic Redundancy Check is performed on all preceding bytes and is generated from the polynomial:
N/A	N/A	12	N/A	N/A	N/A	N/A	N/A	0	0	0	0	1	1	0	1	<cr></cr>
N/A	N/A	13	N/A	N/A	N/A	N/A	N/A	0	0	0	0	1	0	1	0	<lf></lf>

ButterflyGyro[™]

STIM202 Multi-Axis Gyro Module

6.4 Status byte

Table 6-8: Interpretation of bits in STATUS byte

Bit	STATUS bit information	Comment
7	0=OK, 1=System integrity error	
6	0=OK, 1=Start-Up	
5	0=OK, 1=Outside operating conditions	
4	0=OK, 1=Overload	Bits 0-2 will flag the overload channel(s)
3	0=OK, 1=Error in gyro channel	Bits 0-2 will flag the error channel(s)
2	0=OK, 1=Z channel	
1	0=OK, 1=Y channel	
0	0=OK, 1=X channel	

7 MECHANICAL

Table 7-1: Mechanical specifications

Parameter	Conditions	Min Nom Max	Unit	Note
WEIGHT		55	grams	
DUST AND HUMIDITY		IP56		
CLASSIFICATION		1630		
CONNECTOR				
Туре		Nicomatic CMM220 series male		
Number of pins		10		
Contact type		LF		
PLUG				
Proposed plug to fit connector		Nicomatic CMM-222-S-10-A32		
Proposed cover to fit plug		Nicomatic CMM-C2-15		
FIXATION BOLTS	2.5mm tool	M4 DIN 7991-A2		
	3mm tool	M4 DIN 912-A2		

7.1 Mechanical dimensions

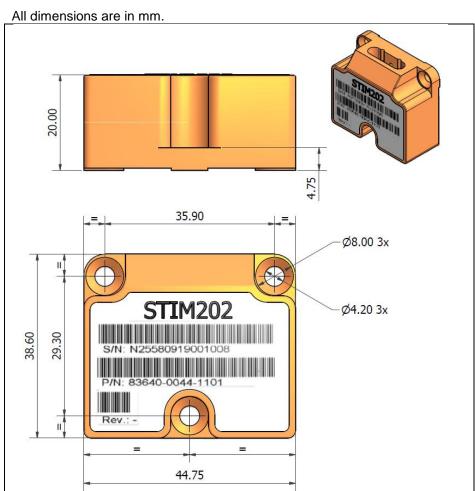


Figure 7-1: Mechanical dimensions

7.2 Pin configuration

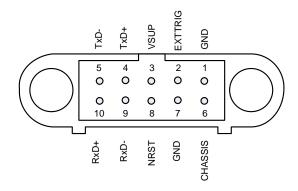


Figure 7-2: Pin configuration as seen from front of STIM202

Table 7-2: Pin descriptions

Pin#	Label	Type	Description	
1	GND	SUPPLY	Power ground (0V)	
2	EXTTRIG	INPUT	External trigger input (if not in use, connect to GND)	
3	VSUP	SUPPLY	Power supply (+5V)	
4	TxD+	OUTPUT	RS422 positive output	
5	TxD-	OUTPUT	RS422 negative output	
6	CHASSIS	CHASSIS	Chassis connection (galvanic isolation from power ground)	
7	GND	INPUT	Test pin: Connect to ground (0V)	
8	NRST	INPUT	Reset (if not in use, connect to VSUP or leave floating)	
9	RxD-	INPUT	RS422 negative input	
10	RxD+	INPUT	RS422 positive input	

7.3 Definition of axes

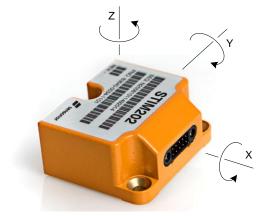


Figure 7-3: Definition of axes

8 BASIC OPERATION

STIM202 is very simple to use. After having connected power, the unit will start performing measurements and transmit the results over the RS422 interface without any need for additional signalling or set-up. Figure 8-1 shows the simplest connection set-up for STIM202.

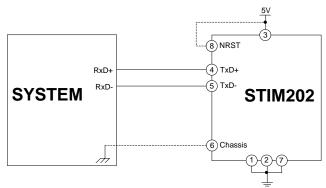


Figure 8-1: Transmit-Only Electrical Connection Diagram

In order to take full advantage of all features of STIM202 the unit needs to be connected as shown in Figure 8-2. In this set-up the system can reset the unit without having to toggle power, external trigger functionality can be utilized, configuration parameters can be changed and extended information like diagnostic information can be read from the device.

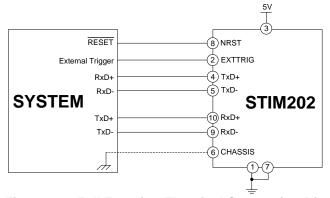


Figure 8-2: Full Function Electrical Connection Diagram

8.1 Reset

STIM202 has a separate reset pin (NRST) in order for the application to reset the unit without having to toggle power.

The reset is active low and has an internal pull-up. Hence the input could be left floating if not in use.

The reset signal is routed to the reset of the microcontroller and effectively forces STIM202 into Init Mode (ref. Figure 8-3 and chapter 8.2.1).

TS1439 rev.8 17/45 March 2011

8.2 Operating modes

The operating modes of STIM202 are shown in Figure 8-3:

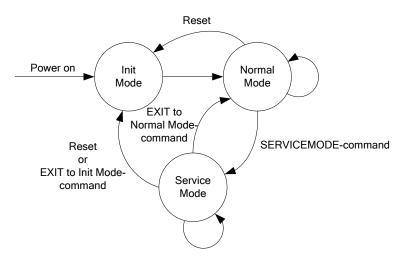


Figure 8-3: Operating modes

8.2.1 Init Mode

Init Mode is entered after power on, after an external reset, when receiving a reset command in Normal Mode or when exiting to Init Mode from Service Mode. In Init Mode the system waits for internal references to settle, resets and synchronizes the gyro measurements channels and transmits three special datagrams containing part number, serial number and configuration data.

Table 6-4 specifies the sequence and contents of the Part Number datagram.

Table 6-5 specifies the sequence and contents of the Serial Number datagram.

Table 6-6 specifies the sequence and contents of the Configuration datagram.

After having transmitted the special Part Number, Serial Number and Configuration datagrams, STIM202 enters Normal Mode. All these special datagrams can also be requested by commands in Normal Mode, ref. chapter 9.

8.2.2 Normal Mode

In Normal Mode STIM202 will constantly measure the gyro channels at an internal sampling rate of 1000 samples/s and transmit at the chosen sample rate, alternatively when receiving an external trigger, dependent on the selected datagram. STIM202 will transmit data regardless of any errors reported in the STATUS byte (ref. Table 6-8). Hence the content of the STATUS byte should continuously be examined.

Table 6-7 specifies the sequence and contents of the datagrams transmitted in Normal Mode.

8.2.2.1 Start-Up

When STIM202 enters Normal Mode from Init Mode, there will be a start-up period where STIM202 is stabilizing the gyros. This is a fixed period as specified in Table 6-2 and bit 6 is set in the STATUS byte (ref. Table 6-8) to communicate this condition. During the start-up period STIM202 will continuously sample, compensate and output data.

There will not be any start-up period when STIM202 is exiting from Service Mode directly to Normal Mode.

8.2.2.2 External trigger

STIM202 can be configured to transmit data only when being externally triggered (ref. chapter 12). Trigger will be on negative going edge. Once having received a trigger signal the STIM202 will transmit one datagram containing the currently available data.

TS1439 rev.8 18/45 March 2011

NB: external trigger input is 3.3V logic. The input pin has an internal pull-up, hence the pin can be driven by open-collector logic to avoid the need for external 3.3V logic.

Note that STIM202 will always transmit the 3 special datagrams when leaving Init Mode even if datagram with external trigger has been chosen and that it will respond in Service Mode as described in chapter 10 regardless of external trigger input.

The timing diagram is shown in Figure 8-4. Latency is the time from the sample has been digitized and low-pass filtered to the external trigger occurs.

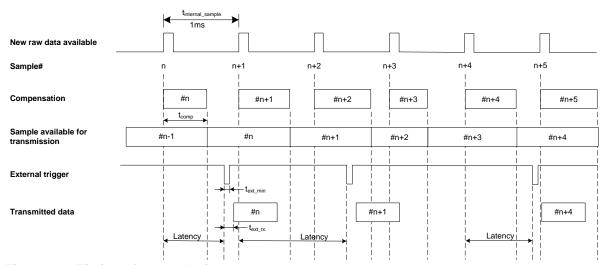


Figure 8-4: Timing of external trigger

8.2.2.3 Output data

8.2.2.3.1 Angular Rate

Angular Rate is available in all datagrams when STIM202 has been configured to output angular rate. The transmitted data will be the last internal sample. E.g. in the case of continuous transmission of datagrams and a sampling rate of 250 samples/s, every fourth internally sample will be transmitted.

Equation 1 and Figure 8-5 show how to convert to [°/s]. Note that the output data is represented as two's complement (most significant bit is the sign bit).

Equation 1: Converting output to [°/s]:

Output
$$[^{\circ}/s] = \frac{(AR_1) \cdot 2^{16} + (AR_2) \cdot 2^8 + (AR_3)}{2^{14}}$$

where AR_1 is the most significant byte of the 24bit output

AR₂ is the middle byte of the 24bit output

AR₃ is the least significant byte of the 24bit output

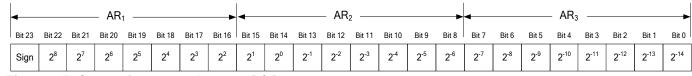


Figure 8-5: Converting output bytes to [°/s]

TS1439 rev.8 19/45 March 2011

STIM202 Multi-Axis Gyro Module

8.2.2.3.2 Incremental angle

Incremental angle is available in all datagrams when STIM202 has been configured to output incremental angle. The transmitted data will be the integrated angle since last transmitted sample. E.g. in the case of continuous transmission of datagrams and a sampling rate of 250 samples/s, each transmission will contain the integrated angle of four internal samples.

Equation 2 and Figure 8-6 show how to convert to [°/sample]. Note that the output data is represented as two's complement (most significant bit is the sign bit):

Equation 2: Converting output to [°/sample]

Output
$$[\circ / sample] = \frac{(IA_1) \cdot 2^{16} + (IA_2) \cdot 2^8 + (IA_3)}{2^{21}}$$

where IA_1 is the most significant byte of the 24bit output

IA₂ is the middle byte of the 24bit output

IA₃ is the least significant byte of the 24bit output

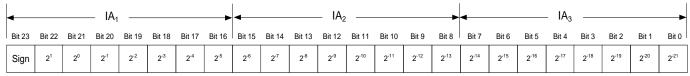


Figure 8-6: Converting output bytes to [°/samples]

8.2.2.3.3 Average angular rate

Average angular rate is available in all datagrams when STIM202 has been configured to output average angular rate. The transmitted data will be the average of the samples since last transmission. E.g. in the case of continuous transmission of datagrams and a sampling rate of 250 samples/s, each transmission will contain the average of the four internal samples.

Note that the configured low-pass filtering is performed prior to calculating the average.

The average is calculated on the samples using the conventional equation for average calculation:

Equation 3: Calculating average:

$$Average Angular Rate [°/s] = \frac{\sum_{m=1.n} Angular Rate_m}{n}$$

where Angular Rate_m is one angular rate data sampled at 1000 samples/s n is number of samples since last transmission

Conversion to [°/s] is the same as for angular rate and is described in Equation 1.

8.2.2.3.4 Integrated angle

Integrated angle is available in all datagrams when STIM202 has been configured to output integrated angle. The transmitted data will be continuously integrated angle since power-on or reset. The integrated angle takes values in the interval [-4°,4°> and will naturally wrap around with no error message indication in the Status byte.

Conversion to [°] is the same as for incremental angle and is described in Equation 2.

8.2.2.3.5 Temperature

Temperature data for each axis is available in certain datagrams (ref. chapter 12).

TS1439 rev.8 20/45 March 2011

STIM202 Multi-Axis Gyro Module

Equation 4 and Figure 8-7 show how to convert to [°C]. Note that the output data is represented as two's complement (most significant bit is the sign bit):

Equation 4: Converting temperature data to [°C]

Output
$$[^{\circ}C] = \frac{(T_1) \cdot 2^8 + (T_2)}{2^8}$$

where T_1 is the most significant byte of the 16bit output T_2 is the least significant byte of the 16bit output

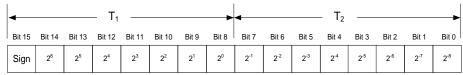


Figure 8-7: Converting temperature data to [°C]

8.2.2.3.6 Counter

A counter is available in certain datagrams (ref. chapter 12). The counter is an unsigned single byte taking values in the interval [0,255].

For the output units Incremental Angle and Average Angular Rate, the counter contains the number of internal samples being represented by the output data.

For the output units Angular Rate and Integrated Angle, the counter will increment by 1 per internal sample. The counter will naturally wrap around with no error message indication in the Status byte.

8.2.2.3.7 Latency

Latency is available in certain datagrams (ref. chapter 12). Latency is an unsigned word taking values in the interval [0, 65535] µs.

Equation 5 and Figure 8-8 show how to convert to [seconds]:

Equation 5: Converting latency data to [seconds]

Output [seconds] = $((t_1) \cdot 2^8 + (t_2)) \cdot 10^{-6}$

where t_1 is the most significant byte of the 16bit output

t₂ is the least significant byte of the 16bit output

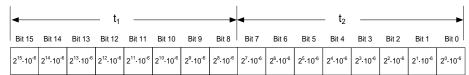


Figure 8-8: Converting latency data to [seconds]

ButterflyGyro[™]

STIM202 Multi-Axis Gyro Module

8.2.3 Service Mode

In Service Mode the communication interface is human readable and hence the communication format supports well the use of terminal based software during the development phase, when the configuration of a device needs to be changed or during investigations into an observed problem.

When Service Mode is entered, STIM202 will respond with its configuration information (same as the response to the <u>i</u> (INFORMATION) command, ref: Figure 10-1).

A set of commands are available, ref. Chapter 10, enabling the user to change intermediately or permanently the configuration parameters, display latest measurement results, display higher details on error information and perform a full diagnostic of the unit.

In Service Mode the gyro measurements will still be running in the background, enabling to switch directly back to Normal Mode without the need for any stabilisation time of filters, etc. However the measurement data itself, when STIM202 is in Service Mode are not transmitted and therefore lost. By using the <u>a</u> (SINGLE-SHOT MEASUREMENT) command (ref. Chapter 10.2) it is possible to display single measurement results.

Exiting Service Mode can be done in several ways:

- 1. Using the external reset. This will force STIM202 into Init Mode. Be advised that during Init Mode, all the configuration parameters are loaded from flash. If any of the configuration parameters have been changed during the Service Mode session but not saved to flash, these changes will be overwritten by the content already stored in flash.
- 2. Using the <u>x</u> (EXIT) command. When using this command a parameter is required to decide whether the device should go to Init Mode or to Normal Mode. When exiting to Normal Mode, any of the changes made to the configuration parameters will still be valid. However, if not saved, the configuration parameters will be overwritten by the content already stored in flash at the next power-up or reset.

8.3 Self diagnostics

STIM202 is constantly checking its internal status. The checks include:

- o Check of internal references
- Check of gyros (error and overload)
- o Check of internal temperatures
- Check of RAM and flash
- Check of supply voltage

When an error situation is detected, the corresponding bit in the STATUS byte (ref. Table 6-8) will be set.

The bits in the STATUS are valid for the data in a single transmission. Hence any error condition is not latched.

In Service Mode it is possible to see the last detected error by using the \underline{i} e (INFORMATION on LAST ERROR IN NORMAL MODE) command, ref. Chapter 10.1 or run a full diagnostic and see the result of the individual checks by using the \underline{c} (DIAGNOSTIC) command, ref. Chapter 10.3.

TS1439 rev.8 22/45 March 2011

ButterflyGyro[™]

STIM202 Multi-Axis Gyro Module

9 COMMANDS IN NORMAL MODE

Several commands are available in Normal Mode, as listed in Table 9-1. Note that all commands in Normal Mode must be transmitted in upper case letters.

Table 9-1 Available commands in Normal Mode

Command	Short description
N	Transmits one Part Number datagram
I	Transmits one Serial Number datagram
С	Transmits one Configuration datagram
R	Resets the unit
SERVICEMODE	Enters Service Mode

Table 9-2 List of special ASCII characters used in Normal Mode

Char	Hex	Dec	Short description
<cr></cr>	0x0D	13	"Carriage Return": used as execution character for commands

No echo of received command characters nor error messages will appear for these commands. Only at the receipt of the complete correct command, STIM202 executes accordingly.

NB: if OUTPUT UNIT is set to INCREMENTAL ANGLE (ref. Chapter 10.7), the transmitted incremented angle in the datagram following any of the requested special datagrams will NOT contain the incremental angle since the last transmitted measurement. Hence the incremented angle occurring during the transmission of a special requested datagram will be lost.

9.1 N (PART NUMBER DATAGRAM) command

General description: Requests transmission of a Part Number datagram (ref. Table 6-4).

Table 9-3: Available I (PART NUMBER DATAGRAM) command

	Syntax	Response
N <cr> Transmits one Part Number data</cr>		Transmits one Part Number datagram

The Part Number datagram will replace the next transmitted Normal Mode datagram.

9.2 I (SERIAL NUMBER DATAGRAM) command

General description: Requests transmission of a Serial number datagram (ref. Table 6-5).

Table 9-4: Available I (SERIAL NUMBER DATAGRAM) command

Syntax	Response	
I <cr></cr>	Transmits one Serial Number datagram	

The Serial Number datagram will replace the next transmitted Normal Mode datagram.

9.3 C (CONFIGURATION DATAGRAM) command

General description: Requests transmission of a configuration datagram (ref. Table 6-6).

Table 9-5: Available C (CONFIGURATION DATAGRAM) command

Syntax	Response
C <cr></cr>	Transmits one Configuration datagram

The Configuration datagram will replace the next transmitted Normal Mode datagram.

ButterflyGyro[™]

STIM202 Multi-Axis Gyro Module

9.4 R (RESET) command

General description: Force a Reset (ref. Figure 8-3).

Table 9-6: Available R (RESET) command

Syntax	Response
R <cr></cr>	Resets the unit

9.5 SERVICEMODE command

General description: Enters Service Mode (ref. chapter 8.2.3).

Table 9-7: Available SERVICEMODE command

Syntax	Response
SERVICEMODE <cr></cr>	Enters Service Mode

If the command is received during the transmission of a datagram, it will complete the transmission before entering Service Mode.

When entering Service Mode, the configuration and identification data of the device will be listed, as shown in Figure 9-1:

```
SERIAL NUMBER = N25580846002002
PRODUCT = STIM202XZ
PART NUMBER = 83644-1034-0121 REV D
HW CONFIG = M5432 REV 5
FW CONFIG = SWD11768 REV 8
OUTPUT UNIT = [°/sample] - INCREMENTAL ANGLE
SAMPLE RATE [samples/s] = 1000
LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 262
LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = NA
LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 262
DATAGRAM FORMAT = STANDARD
BIT RATE [bps] = 374400
DATA LENGTH = 8
STOP BITS = 1
PARITY = FVFN
LINE TERMINATION = ON
```

Figure 9-1: Example of response from SERVICEMODE command

ButterflyGyro[™]

STIM202 Multi-Axis Gyro Module

10 COMMANDS IN SERVICE MODE

Several commands are available in Service Mode, as listed in Table 10-1. Note that all commands in Service Mode must be transmitted in lower case letters.

Table 10-1 Available commands in Service Mode

Command	Short description
i	Lists specific information (e.g. serial number, configuration, error information)
а	Performs a single-shot measurement
С	Performs a diagnostic of the unit
d	Changes datagram format (standard, extended or standard with CR+LF-termination)
t	Changes transmission parameters (e.g. bit rate, data length, stop bits)
r	Turns line termination ON or OFF
u	Changes measurement output unit
f	Changes LP filter -3dB frequency
m	Changes sample rate
S	Saves configuration data
Х	Exits Service Mode and returns to Normal Mode or Init Mode
Z	Restore to factory settings
?	Help function on the available commands in Service Mode

Table 10-2 List of special ASCII characters used in Service Mode

Char	Hex	Dec	Short description
<bs></bs>	0x08	8	"Back Space": deletes last received character (received since last <cr>)</cr>
<cr></cr>	0x0D	13	"Carriage Return": typically used as execution character for commands
<sp></sp>	0x20	32	"Space": used to separate command and first parameter
, ,	0x2C	44	"Comma": used to separate parameters in a command
'>'	0x3E	62	Used together with <cr> as: "Ready to receive new command" prompt</cr>

When STIM202 is in Service Mode and ready to receive a new command, it will issue the special ASCII character <CR> followed by '>'. As some commands (e.g. SINGLE-SHOT MEASUREMENT command) may respond with a varying number of lines, automated set-ups should look for the special prompt sequence (<CR>+'>') before issuing a new command.

Received characters will be echoed. A command is decoded and executed when receiving the special ASCII character <CR>. <BS> is also recognised and will delete the last received character in the input buffer. The size of the input buffer is 80 characters. <BS> is valid for the characters received since last <CR>.

The command character and first parameter (when applicable) are separated by a space (character 0x20). When there are more than one parameter to a command (e.g. TRANSMISSION PARAMETER command), these must be separated by a comma (character 0x2C).

In the event of an unknown command, inconsistent syntax or incorrect value of parameter(s), STIM202 will respond with an error message. Error messages are on the format:

E<nnn><SP><Error description><CR> where nnn is an error number

ButterflyGyro[™]

STIM202 Multi-Axis Gyro Module

10.1 i (INFORMATION) command

General description: Lists various requested information about the device

Table 10-3: Available i (INFORMATION) commands

Syntax	Response	
i <cr></cr>	Lists the product configuration and identification data	
i <sp><cmd><cr></cr></cmd></sp>	Gives information about the specific parameter	

Table 10-4: Allowed values for <cmd> parameter for i (INFORMATION) commands

<cmd></cmd>	Result	
S	Returns the serial number of the device	
n	Returns the product name of the device	
X	Returns the part number of the device	
h	Returns the HW configuration and revision of the device	
р	Returns the FW configuration and revision of the device	
m	Returns the sample rate of the device	
f	Returns the LP filter -3dB frequency for each axis	
d	Returns the datagram format	
t	Returns the transmission parameters of the device	
r	Returns the line termination (ON or OFF)	
u	Returns the output unit of the device	
е	Prints the extended error information from the last detected error in Normal Mode	

Table 10-5: Error messages for i (INFORMATION) commands

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command or parameter is not recognised
E002	INCORRECT NUMBER OF PARAMETERS	Too many or too few parameters, use of comma between command and first parameter

```
SERIAL NUMBER = N25580846002002
PRODUCT = STIM202XZ
PART NUMBER = 83644-1034-0121 REV D
HW CONFIG = M5432 REV 5
FW CONFIG = SWD11768 REV 8
OUTPUT UNIT = [°/sample] - INCREMENTAL ANGLE
SAMPLE RATE [samples/s] = 1000
LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 262
LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = NA
LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 262
DATAGRAM FORMAT = STANDARD
BIT RATE [bps] = 374400
DATA LENGTH = 8
STOP BITS = 1
PARITY = EVEN
LINE TERMINATION = ON
```

Figure 10-1: Example of response from i (INFORMATION) command

```
>i s
SERIAL NUMBER = N25580846002002
>
```

Figure 10-2: Example of response from i s (INFORMATION on SERIAL NUMBER) command

ButterflyGyro[™]

STIM202 Multi-Axis Gyro Module

```
>i n
PRODUCT = STIM202XZ
>
```

Figure 10-3: Example of response from in (INFORMATION on PRODUCT NAME) command

```
>i x
PART NUMBER = 83644-1034-0121 REV D
>
```

Figure 10-4: Example of response from i x (INFORMATION on PART NUMBER) command

```
>i h
HW CONFIG = M5432 REV 5
>
```

Figure 10-5: Example of response from i h (INFORMATION on HW CONFIGURATION) command

```
>i p
FW CONFIG = SWD11768 REV 8
>
```

Figure 10-6: Example of response from i p (INFORMATION on FW CONFIGURATION) command

```
>i m
SAMPLE RATE [samples/s] = 1000
>
```

Figure 10-7: Example of response from i m (INFORMATION on SAMPLE RATE) command

```
>i f
LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 262
LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = NA
LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 262
>
```

Figure 10-8: Example of response from i f (INFORMATION on LP FILTER -3dB FREQUENCY) command

```
>i d
DATAGRAM FORMAT = STANDARD
>
```

Figure 10-9: Example of response from i d (INFORMATION on DATAGRAM CONTENT) command

```
>i t
BIT RATE [bps] = 374400
DATA LENGTH = 8
STOP BITS = 1
PARITY = EVEN
>
```

Figure 10-10: Example of response from it (INFORMATION on TRANSMISSION PARAMETERS) command

ButterflyGyro™

STIM202 Multi-Axis Gyro Module

>i r LINE TERMINATION = ON >

Figure 10-11: Example of response from i r (INFORMATION) command

>i u
OUTPUT UNIT = [°/sample] – INCREMENTAL ANGLE
>

Figure 10-12: Example of response from i u (INFORMATION on OUTPUT UNIT) command

>i e
GYRO X-AXIS I-CH OVERFLOW = FAILED
>

Figure 10-13: Example of response from i e (INFORMATION on LAST ERROR IN NORMAL MODE) command

ButterflyGyro[™]

STIM202 Multi-Axis Gyro Module

10.2 a (SINGLE-SHOT MEASUREMENT) command

General description: Displays the result of latest measurement (measurement process running constantly in the background).

If sampling rate has been set to external trigger, the SINGLE-SHOT MEASUREMENT will respond to the measurement result at the latest trigger. Hence if no trigger is received, the command will respond with the same data if sent multiple times.

Table 10-6: Available a (SINGLE-SHOT MEASUREMENT) command

Syntax	Response
a <cr></cr>	Displays the result of the latest measurement sample

Table 10-7: Error messages for a (SINGLE-SHOT MEASUREMENT) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Any characters between command and <cr></cr>
	PARAMETERS	

```
>a

X-AXIS = 1.43255°/s

Y-AXIS = NA

Z-AXIS = 243.33667°/s

STATUS = 00000000 = OK
```

Figure 10-14: Example of response from a (SINGLE-SHOT MEASUREMENT) command

```
>a
X-AXIS = 0.000716275°
Y-AXIS = NA
Z-AXIS = 0.121668335°
STATUS = 00100101 = NOT OK
BIT 5: OUTSIDE OPERATING CONDITIONS
BIT 2: ERROR IN Z-CHANNEL
BIT 0: ERROR IN X-CHANNEL
```

Figure 10-15: Example of response from a (SINGLE-SHOT MEASUREMENT) command with error flagging

ButterflyGyro '

STIM202 Multi-Axis Gyro Module

10.3 c (DIAGNOSTIC) commandGeneral description: Performs a diagnostic of the unit.

Table 10-8: Available c (DIAGNOSTIC) command

Syntax	Response
c <cr></cr>	Performs a diagnostic check

Table 10-9: Error messages for c (DIAGNOSTIC) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF PARAMETERS	Any characters between command and <cr></cr>

```
SERIAL NUMBER = N25580846002002
PRODUCT = STIM202XZ
PART NUMBER = 83644-1034-0121 REV D
HW CONFIG = M5432 REV 5
FW CONFIG = SWD11768 REV 8
SYSTEM STATUS:
RAM CHECK = OK
FLASH CHECK = OK
STACK STATUS MONITOR = OK
STACK TEMPERATURE CONTROL = OK
STACK COMMAND HANDLER = OK
STACK SAMPLE = OK
STACK FLASH = OK
MICRO CONTROLLER TEMPERATURE = OK
VOLTAGE SUPPLIES:
REFERENCE VOLTAGE 5.0V = OK
REFERENCE VOLTAGE 2.5V = OK
REFERENCE VOLTAGE 2.048V = OK
REGULATED VOLTAGE 5.0V = OK
REGULATED VOLTAGE 1.8V = OK
INPUT VOLTAGE 5.0V = OK
VOLTAGE BOOST = OK
GYRO X-AXIS:
GYRO X-AXIS EXC.FREQ = OK
GYRO X-AXIS ASIC TEMP = OK
GYRO X-AXIS CONTROLLER SETPOINT DIFF = OK
GYRO X-AXIS SENSOR TEMP = OK
GYRO X-AXIS COMPENSATED RATE SIGNAL = OK
GYRO X-AXIS PWM = OK
GYRO X-AXIS CALCULATION OVERFLOW = OK
GYRO X-AXIS Q-CH RANGE = OK
GYRO X-AXIS I-CH RANGE = OK
GYRO X-AXIS DET.DC = OK
GYRO X-AXIS EXC.DC = OK
GYRO X-AXIS SPI = OK
GYRO X-AXIS EXC.AMPL = OK
GYRO X-AXIS OVERRUN = OK
GYRO Z-AXIS:
GYRO Z-AXIS EXC.FREQ = OK
GYRO Z-AXIS ASIC TEMP = OK
 GYRO Z-AXIS CONTROLLER SETPOINT DIFF = NOK
 GYRO Z-AXIS SENSOR TEMP = NOK
GYRO Z-AXIS COMPENSATED RATE SIGNAL = OK
GYRO Z-AXIS PWM = OK
GYRO Z-AXIS CALCULATION OVERFLOW = OK
GYRO Z-AXIS Q-CH RANGE = OK
GYRO Z-AXIS I-CH RANGE = OK
GYRO Z-AXIS DET.DC = OK
GYRO Z-AXIS EXC.DC = OK
GYRO 7-AXIS SPI = OK
GYRO Z-AXIS EXC.AMPL = OK
GYRO Z-AXIS OVERRUN = OK
```

Figure 10-16: Example of response from c (DIAGNOSTIC) command

ButterflyGyro[™]

STIM202 Multi-Axis Gyro Module

10.4 d (DATAGRAM FORMAT) command

General description: Changes the datagram format in Normal Mode (ref. Table 6-7).

Table 10-10: Available d (DATAGRAM FORMAT) command

Syntax	Response
d <sp><d_format><cr></cr></d_format></sp>	Changes the datagram format in Normal Mode

Table 10-11: Allowed values for d (DATAGRAM FORMAT) command

<d_format></d_format>	Result
S	Changes the datagram format in Normal Mode to standard format
е	Changes the datagram format in Normal Mode to extended format
r	Changes the datagram format in Normal Mode to standard format with CR+LF
	termination
j	Changes the datagram format in Normal Mode to rate and temperature
k	Changes the datagram format in Normal Mode to rate and counter
I	Changes the datagram format in Normal Mode to rate and latency
n	Changes the datagram format in Normal Mode to rate, temperature and counter
0	Changes the datagram format in Normal Mode to rate, temperature and latency

Table 10-12: Error messages for d (DATAGRAM FORMAT) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command
	PARAMETERS	and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

>d s
DATAGRAM FORMAT = STANDARD
>

Figure 10-17: Example of response from d s (DATAGRAM FORMAT) command

>d e
DATAGRAM FORMAT = EXTENDED
>

Figure 10-18: Example of response from d e (DATATGRAM FORMAT) command

>d r
DATAGRAM FORMAT = STANDARD WITH <CR><LF> TERMINATION
>

Figure 10-19: Example of response from d r (DATATGRAM FORMAT) command

STIM202 Multi-Axis Gyro Module

10.5 t (TRANSMISSION PARAMETERS) command

General description: Changes the transmission parameters for the RS422 interface.

Table 10-13: Available t (TRANSMISSION PARAMETERS) commands

Syntax	Response
t <sp><bit rate=""><cr></cr></bit></sp>	Changes the transmission bit rate and leaves number of
	stop bits and parity unchanged
t <sp><bit rate="">','<stop bits="">','<parity><cr></cr></parity></stop></bit></sp>	Changes the transmission bit rate, number of stop bits
	and parity

Table 10-14: Allowed values for

sit rate> parameter for t (TRANSMISSION PARAMETERS) commands

 	Result
374400	Will set the bit rate to 374400 bits/s
460800	Will set the bit rate to 460800 bits/s
921600	Will set the bit rate to 921600 bits/s

Table 10-15: Allowed values for <stop bits> parameter for t (TRANSMISSION PARAMETERS) commands

<stop bits=""></stop>	Result
1	Will set number of stop bits to 1
2	Will set number of stop bits to 2

Table 10 10:7 metred value 10: sparity parameter for this mediate 17 minutes		
<stop bits=""></stop>	Result	
n	Will set no parity	
е	Will set even parity	
O	Will set odd parity	

Table 10-17: Error messages for t (TRANSMISSION PARAMETERS) commands

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF PARAMETERS	Too many or too few parameters, use of comma between command and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

>t 460800,2,e
TRANSMISSION PROTOCOL = 460800 bits/s, 2 STOP BIT(S), EVEN PARITY
>

Figure 10-20: Example of response from t (TRANSMISSION PARAMETERS) command

Transmission parameters will change after the response as shown in Figure 10-20 has been given.

TS1439 rev.8 33/45 March 2011

ButterflyGyro[™]

STIM202 Multi-Axis Gyro Module

10.6 r (LINE TERMINATION) command

General description: Turns the line termination ON or OFF. Line termination should be ON when communicating point-to-point (single master – single slave).

Table 10-18: Available r (LINE TERMINATION) command

Syntax	Response	
r <sp><lireterm><cr></cr></lireterm></sp>	Changes the line termination	

Table 10-19: Allowed values for r (LINE TERMINATION) command

	Result	
0	Turns line termination OFF	
1	Turns line termination ON	

Table 10-20: Error messages for r (LINE TERMINATION) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF PARAMETERS	Too many or too few parameters, use of comma between command and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

>r 0
LINE TERMINATION = OFF
>

Figure 10-21: Example of response from r 0 (LINE TERMINATION) command

>r 1
LINE TERMINATION = ON
>

Figure 10-22: Example of response from r 1 (LINE TERMINATION) command

STIM202 Multi-Axis Gyro Module

10.7 u (OUTPUT UNIT) command

General description: Sets the unit of the transmission in Normal Mode to angular rate or incremental angle.

Table 10-21: Available u (OUTPUT UNIT) command

	11 01 01111 0011111111111	
Syntax	Response	
u <sp><outunit><cr></cr></outunit></sp>	Changes the unit of the transmission in Normal Mode	

Table 10-22: Allowed values for <outunit> for u (OUTPUT UNIT) command

<outunit></outunit>	Result	
а	Changes the unit of the transmission in Normal Mode to angular rate [°/s]	
i	Changes the unit of the transmission in Normal Mode to incremental angle [°/sample]	
m	Changes the unit of the transmission in Normal Mode to average angular rate [°/s]	
s	Changes the unit of the transmission in Normal Mode to integrated angle [°]	

Table 10-23: Error messages for u (OUTPUT UNIT) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command
	PARAMETERS	and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

>u a
OUTPUT UNIT = [°/s] – ANGULAR RATE
>

Figure 10-23: Example of response from u a (OUTPUT UNIT) command

>u i
OUTPUT UNIT = [°/sample] – INCREMENTAL ANGLE
>

Figure 10-24: Example of response from u i (OUTPUT UNIT) command

>u m
OUTPUT UNIT = [°/s] – AVERAGE ANGULAR RATE
>

Figure 10-25: Example of response from u m (OUTPUT UNIT) command

>u s
OUTPUT UNIT = [°] – INTEGRATED ANGLE
>

Figure 10-26: Example of response from u s (OUTPUT UNIT) command

STIM202 Multi-Axis Gyro Module

10.8 f (LP FILTER -3dB FREQUENCY) command

General description: Changes the low-pass filter -3dB frequency for one or all axes.

Note that filter settings should be considered together with the sample rate in order to avoid issues with folding due to undersampling. No warnings will be issued by STIM202 if e.g. a high filter bandwidth and a low sampling rate have been chosen. Also note that change in filter setting will change the group delay, ref. Table 6-3.

Table 10-24: Available f (LP FILTER -3dB FREQUENCY) commands

Syntax	Response
f <sp><-3dBfreq><cr></cr></sp>	Changes the LP filter -3dB frequency for all axes
f <sp><-3dBfreq>','<axis><cr></cr></axis></sp>	Changes the LP filter -3dB frequency for a specified axis

Table 10-25: Allowed values for <-3dBfreq> parameter for f (LP FILTER -3dB FREQUENCY) commands

<-3dBfreq>	Result
16	Will change LP filter -3dB frequency to 16Hz
33	Will change LP filter -3dB frequency to 33Hz
66	Will change LP filter -3dB frequency to 66Hz
131	Will change LP filter -3dB frequency to 131Hz
262	Will change LP filter -3dB frequency to 262Hz

Table 10-26: Allowed values for <axis> parameter for f (LP FILTER -3dB FREQUENCY) commands

<axis></axis>	Result	
X	Will change LP filter -3dB frequency for X-axis only	
у	Will change LP filter -3dB frequency for Y-axis only	
z	Will change LP filter -3dB frequency for Z-axis only	

Table 10-27: Error messages for f (LP FILTER -3dB FREQUENCY) commands

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command
	PARAMETERS	and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

```
>f 66,x
LP FILTER -3dB FREQUENCY = 66 Hz FOR X-AXIS
>
```

Figure 10-27: Example of response from f (LP FILTER -3dB FREQUENCY) command

```
>f 131
LP FILTER -3dB FREQUENCY = 131 Hz FOR ALL AXES
```

Figure 10-28: Example of response from f (LP FILTER -3dB FREQUENCY) command

TS1439 rev.8 36/45 March 2011

ButterflyGyro[™]

STIM202 Multi-Axis Gyro Module

10.9 m (SAMPLE RATE) command

General description: Changes the sample rate in Normal Mode. The sample rate is the same for all gyro channels.

Note that sample rate should be considered together with filter settings in order to avoid issues with folding due to undersampling. No warnings will be issued by STIM202 if e.g. a high filter bandwidth and a low sampling rate have been chosen.

Table 10-28: Available m (SAMPLE RATE) command

Syntax	Response	
m <sp><sampl.freq><cr></cr></sampl.freq></sp>	Changes the sample rate in Normal Mode	

Table 10-29: Allowed values for <sampl.freq> parameter for m (SAMPLE RATE) command

<sampl.freq></sampl.freq>	Result	
125	Will set sample rate to 125 samples /second	
250	Will set sample rate to 250 samples /second	
500	Will set sample rate to 500 samples /second	
1000	Will set sample rate to 1000 samples /second	
0	Enables External Trigger	

Table 10-30: Error messages for m (SAMPLE RATE) command

	14	Bara Wilamanan
Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command
	PARAMETERS	and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

```
>m 500
SAMPLE RATE = 500 samples/s
>
```

Figure 10-29: Example of response from m (SAMPLE RATE) command

```
>m 0
SAMPLE RATE = EXTERNAL TRIGGER
>
```

Figure 10-30: Example of response from m (SAMPLE RATE) command

ButterflyGyro[™]

STIM202 Multi-Axis Gyro Module

10.10 s (SAVE) command

General description: Saves configuration parameters to flash. This will permanently change the configuration parameters and hence be valid after an initialisation or power-off.

Table 10-31: Available s (SAVE) command

Syntax	Response
s <cr></cr>	Saves system parameters to flash. This command will require a confirmation prior to
	execution. Confirmation to be responded in upper case letter.

Table 10-32: Error messages for s (SAVE) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Any characters between command and <cr></cr>
	PARAMETERS	
E003	INVALID PARAMETER	Value of parameter outside valid range
E004	EXCEEDED MAXIMUM NUMBER OF	Warning appears when maximum number of saves has been
	SAVES	exceeded (1000 saves). STIM202 will always attempt to save
		the configuration when receiving the <u>s</u> (SAVE) command.
E005	ERROR DURING SAVE	System parameters not successfully transferred to flash

>S SYSTEM PARAMETERS WILL BE PERMANENTLY CHANGED. CONFIRM SAVE(Y/N): Y SYSTEM PARAMETERS SUCCESSFULLY STORED IN FLASH. NUMBER OF SAVES = 26

Figure 10-31: Example of response from s (SAVE) command when confirming save

>S
SYSTEM PARAMETERS WILL BE PERMANENTLY CHANGED. CONFIRM SAVE(Y/N): N
SAVE COMMAND ABORTED.
>

Figure 10-32: Example of response from s (SAVE) command when not confirming save

SYSTEM PARAMETERS WILL BE PERMANENTLY CHANGED. CONFIRM SAVE(Y/N): y
SAVE COMMAND ABORTED.

E003 INVALID PARAMETER
>

Figure 10-33: Example of response from s (SAVE) command when not correctly responding to confirmation

ButterflyGyro[†]

STIM202 Multi-Axis Gyro Module

10.11 x (EXIT) command

General description: Terminates Service Mode and returns to Normal Mode directly or via Init Mode (ref. Figure 8-3).

Table 10-33: Available x (EXIT) command

Syntax	Response
x <sp><exit_to><cr></cr></exit_to></sp>	Terminates Service Mode

Table 10-34: Allowed values for <exit to> for x (EXIT) command

<exit_to></exit_to>	Result
n	Terminates Service Mode and return to Normal Mode. If system parameters have been changed compared to flash content, a confirmation is requested before exiting to Normal Mode ("Y" in upper case letter). There will be a 3 seconds hold time between the transmitted command response and execution of the EXIT command.
i	Terminates Service Mode and return to Init Mode. If system parameters have been changed compared to flash content, a confirmation is requested before exiting to Normal Mode ("Y" in upper case letter). There will be a 3 seconds hold time between the transmitted command response and execution of the EXIT command. NB: Changes made to system parameters, but not saved, will be overwritten by the data already stored in flash when entering Init Mode.
N	Terminates Service Mode and return immediately to Normal Mode (without confirmation if system parameters have been changed compared to flash and without any hold time)
I	Terminates Service Mode and return immediately to Init Mode (without confirmation if system parameters have been changed compared to flash and without any hold time). NB: Changes made to system parameters, but not saved, will be overwritten by the data already stored in flash when entering Init Mode.

Table 10-35: Error messages for x (EXIT) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command
	PARAMETERS	and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

>x n

SYSTEM RETURNING TO NORMAL MODE.

Figure 10-34: Example of response from x n (EXIT) command when system parameters match contents of flash

>x i

SYSTEM RETURNING TO INIT MODE.

Figure 10-35: Example of response from x i (EXIT) command when system parameters match contents of flash

>x n

CURRENT SYSTEM PARAMETERS DO NOT MATCH FLASH CONTENT. CONFIRM EXIT(Y/N): Y SYSTEM RETURNING TO NORMAL MODE.

Figure 10-36: Example of response from x n (EXIT) command after system parameters have been changed but not saved with confirmed EXIT.

ButterflyGyro[™]

STIM202 Multi-Axis Gyro Module

>x i

CURRENT SYSTEM PARAMETERS DO NOT MATCH FLASH CONTENT. CONFIRM EXIT(Y/N): N

>

Figure 10-37: Example of response from x i (EXIT) command after system parameters have been changed but not saved with confirmed not to EXIT.

>x r

CURRENT SYSTEM PARAMETERS DOES NOT MATCH FLASH CONTENT. CONFIRM EXIT(Y/N): n

E003 INVALID PARAMETER

_

Figure 10-38: Example of response from x n (EXIT) command after system parameters have been changed but not saved with incorrect response to confirmation.

10.12 z (RESTORE TO FACTORY SETTINGS) command

General description: Restores the configuration of the unit to its factory settings.

Table 10-36: Available z (RESTORE TO FACTORY SETTINGS) commands

Syntax	Response
z <cr></cr>	Restores the configuration of the unit to its factory settings.
	NB: The restored configuration will not be permanent unless it is SAVEd to
	flash before EXITing Service Mode, resetting the unit or turning off power.

Table 10-37: Error messages for z (RESTOR TO FACTORY SETTINGS) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF PARAMETERS	Any characters between command and <cr></cr>
E003	INVALID PARAMETER	Value of parameter outside valid range

>Z

RESTORE TO FACTORY SETTINGS.

CONFIRM CHANGE TO FACTORY SETTINGS (Y/N): Y

APPLYING FACTORY SETTINGS

FACTORY SETTINGS APPLIED. TO PERMANENTLY STORE THE SETTINGS, USE THE SAVE COMMAND.

>

Figure 10-39: Example of response from z (RESTORE TO FACTORY SETTINGS) command with no change in transmission parameters.

>7

RESTORE TO FACTORY SETTINGS.

CONFIRM CHANGE TO FACTORY SETTINGS(Y/N): Y

TRANSMISSION PARAMETERS WILL BE CHANGED. PLEASE CONFIRM (Y/N): Y

THE TRANSMISSION CONFIGURATION WILL BE CHANGED TO:

TRANSMISSION PROTOCOL = 460800 bits/s, 2 STOP BIT(S), EVEN PARITY

APPLYING FACTORY SETTINGS

FACTORY SETTINGS APPLIED. TO PERMANENTLY STORE THE SETTINGS, USE THE SAVE COMMAND.

>

Figure 10-40: Example of response from z (RESTORE TO FACTORY SETTINGS) command with change in transmission parameters.

ButterflyGyro[™]

STIM202 Multi-Axis Gyro Module

10.13 ? (HELP) command

General description: Help function on the available commands in Service Mode.

Table 10-38: Available ? (HELP) commands

Syntax	Response	
? <cr></cr>	Lists the available parameters for this command	
? <sp><hlp><cr></cr></hlp></sp>	Responds with information on the specified command	

Table 10-39: Allowed values for <hlp> for ? (HELP) command

<hlp></hlp>	Result	
i	Responds with information on the INFORMATION command	
a	Responds with information on the SINGLE-SHOT MEASUREMENT command	
С	Responds with information on the DIAGNOSTIC command	
d	Responds with information on the DATAGRAM FORMAT command	
t	Responds with information on the TRANSMISSION PARAMETERS command	
r	Responds with information on the LINE TERMINATION command	
u	Responds with information on the OUTPUT UNIT command	
f	Responds with information on the LP FILTER -3dB FREQUENCY command	
m	Responds with information on the SAMPLE RATE command	
S	Responds with information on the SAVE command	
Х	Responds with information on the EXIT command	
Z	Responds with information on the RESTORE TO FACTORY SETTINGS command	

Table 10-40: Error messages for ? (HELP) commands

tame to the art metalliges to the constant		
Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command
	PARAMETERS	and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

>?

AVAILABLE PARAMETERS:

- i: LISTS SPECIFIC INFORMATION
- a: PERFORMS A SINGLE-SHOT MEASUREMENT
- c: PERFORMS A DIAGNOSTIC OF THE UNIT
- d: CHANGES DATAGRAM FORMAT
- t: CHANGES TRANSMISSION PARAMETERS
- r: CHANGES THE LINE TERMINATION
- u : CHANGES OUTPUT UNIT
- f: CHANGES LP FILTER -3dB FREQUENCY
- m: CHANGES SAMPLE RATE
- s: SAVES CONFIGURATION DATA
- z: RESTORES FACTORY SETTINGS
- x: EXITS SERVICE MODE

Figure 10-41: Example of response from ? (HELP) command

ButterflyGyro[™]

STIM202 Multi-Axis Gyro Module

```
i: LISTS THE PRODUCT CONFIGURATION DATA
is: RETURNS THE SERIAL NUMBER
in: RETURNS THE PRODUCT NAME
ix: RETURNS THE PART NUMBER
ih: RETURNS THE HW CONFIGURATION AND REVISION
ip: RETURNS THE FW CONFIGURATION AND REVISION
im: RETURNS THE SAMPLE RATE
if: RETURNS THE LP FILTER -3dB FREQUENCY
id: RETURNS THE DATAGRAM FORMAT
it: RETURNS THE TRANSMISSION PARAMETERS
ir: RETURNS THE LINE TERMINATION SETTING
iu: RETURNS THE OUTPUT UNIT
ie: PRINTS THE EXTENDED ERROR INFORMATION FROM THE LAST DETECTED ERROR IN NORMAL MODE
```

Figure 10-42: Example of response from ? i (HELP on INFORMATION) command

```
>? a
a: PERFORMS A SINGLE-SHOT MEASUREMENT
>
```

Figure 10-43: Example of response from ? a (HELP ON SINGLE-SHOT MEASUREMENT) command

```
>? c
c: PERFORMS A DIAGNOSTIC OF THE UNIT
>
```

Figure 10-44: Example of response from ? c (HELP on DIAGNOSTIC) command

```
>? d
d s: CHANGES THE CONTENT OF THE DATAGRAMS IN NORMAL MODE TO STANDARD CONTENT
d e: CHANGES THE CONTENT OF THE DATAGRAMS IN NORMAL MODE TO EXTENDED CONTENT
d r: CHANGES THE CONTENT OF THE DATAGRAMS IN NORMAL MODE TO STANDARD CONTENT W.CR+LF TERMINATION
d j: CHANGES THE CONTENT OF THE DATAGRAMS IN NORMAL MODE TO RATE AND TEMPERATURE
d k: CHANGES THE CONTENT OF THE DATAGRAMS IN NORMAL MODE TO RATE AND COUNTER
d l: CHANGES THE CONTENT OF THE DATAGRAMS IN NORMAL MODE TO RATE AND LATENCY
d n: CHANGES THE CONTENT OF THE DATAGRAMS IN NORMAL MODE TO RATE, TEMPERATURE AND COUNTER
d o: CHANGES THE CONTENT OF THE DATAGRAMS IN NORMAL MODE TO RATE, TEMPERATURE AND LATENCY
```

Figure 10-45: Example of response from ? d (HELP on DATAGRAM FORMAT) command

```
>? t
t <bit rate>: CHANGES THE BIT RATE [bits/s]
t <bit rate>, <stop bits>, <parity>: CHANGES THE BIT RATE [bits/s], NUMBER OF STOP BITS AND PARITY
ALLOWED VALUES FOR <bit rate> = 374400, 460800 AND 921600
ALLOWED VALUES FOR <stop bits> = 1 AND 2
ALLOWED VALUES FOR <parity> = n (=NONE), e (=EVEN) AND o (=ODD)
>
```

Figure 10-46: Example of response from ? t (HELP on TRANSMISSION PARAMETERS) command

```
>? r
r 0: TURNS LINE TERMINATION OFF
r 1: TURNS LINE TERMINATION ON
>
```

Figure 10-47: Example of response from ? r (HELP on LINE TERMINATION) command

ButterflyGyro[™]

STIM202 Multi-Axis Gyro Module

```
>? u
u a: CHANGES OUTPUT UNIT TO ANGULAR RATE [°/s]
u i: CHANGES OUTPUT UNIT TO INCREMENTAL ANGLE [°/sample]
u m: CHANGES OUTPUT UNIT TO AVERAGE ANGULAR RATE [°/s]
u s: CHANGES OUTPUT UNIT TO INTEGRATED ANGLE [°]
>
```

Figure 10-48: Example of response from ? u (HELP on OUTPUT UNIT) command

```
>? f
f <-3dBfreq>: CHANGES THE LP FILTER -3dB FREQUENCY [Hz] FOR ALL AXES
f <-3dBfreq>,<axis>: CHANGES THE LP FILTER -3dB FREQUENCY [Hz] FOR A SPECIFIC AXIS
ALLOWED VALUES FOR <-3dBfreq> = 16, 33, 66, 131 AND 262
ALLOWED VALUES FOR <axis> = x, y AND z
>
```

Figure 10-49: Example of response from ? f (HELP on LP FILTER -3dB FREQUENCY) command

```
>? m
m <sampl.freq>: CHANGES THE SAMPLE RATE [samples/s]
ALLOWED VALUES FOR <sampl.freq> = 125, 250, 500, 1000 AND 0 (EXTERNAL TRIGGER)
>
```

Figure 10-50: Example of response from ? m (HELP on SAMPLE RATE) command

```
>? s
s: SAVES SYSTEM PARAMETERS TO FLASH
>
```

Figure 10-51: Example of response from ? s (HELP on SAVE) command

```
>? z
z: RESTORES FACTORY SETTINGS
>
```

Figure 10-52: Example of response from ? z (HELP on RESTORES TO FACTORY SETTINGS) command

```
>? X
x n: EXITS SERVICE MODE AND RETURNS TO NORMAL MODE
x i: EXITS SERVICE MODE AND RETURNS TO INIT MODE
x N: EXITS SERVICE MODE AND RETURNS IMMEDIATELY TO NORMAL MODE
x I: EXITS SERVICE MODE AND RETURNS IMMEDIATELY TO INIT MODE
NB: NON-SAVED SYSTEM PARAMETERS WILL BE OVERWRITTEN BY STORED CONTENT IN FLASH WHEN EXITING TO INIT MODE
>
```

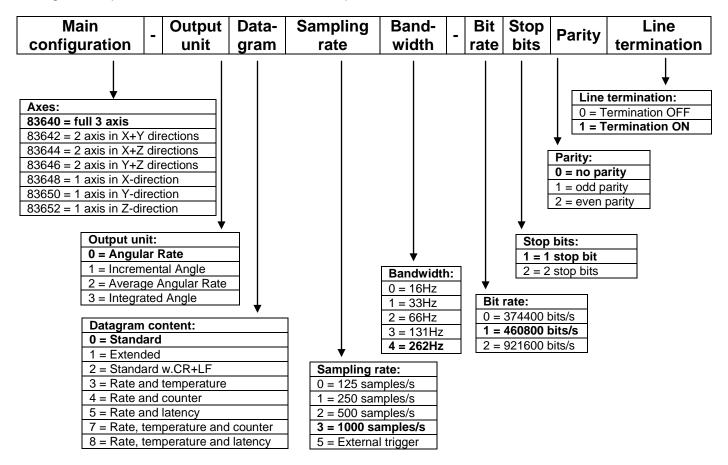

Figure 10-53: Example of response from ? x (HELP on EXIT) command

Figure 11-1: Example of marking of STIM202

12 PART NUMBER / ORDERING INFORMATION

Configuration options in **bold** letters are the standard option.

Example: part number 83640-0032-1211 has the following configuration:

- o X, Y and Z axis
- Angular Rate Output [°/s]
- Standard Datagram
- o 1000 samples/s
- -3dB bandwidth = 66Hz
- Bit rate = 460800 bits/s
- o 2 stop bits
- Odd parity
- Line termination ON

TS1439 rev.8 44/45 March 2011

ButterflyGyro[™]

STIM202 Multi-Axis Gyro Module

NOTES

Information furnished by SensoNor Technologies is believed to be accurate and reliable. However, no responsibility is assumed by SensoNor Technologies for its use, nor for any infringements of patents or other rights of third parties that may result from its use. SensoNor Technologies reserves the right to make changes without further notice to any products herein. SensoNor Technologies makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SensoNor Technologies assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. No license is granted by implication or otherwise under any patent or patent rights of SensoNor Technologies. Trademarks and registered trademarks are the property of their respective owners. SensoNor Technologies products are not intended for any application in which the failure of the SensoNor Technologies product could create a situation where personal injury or death may occur. Should Buyer purchase or use SensoNor Technologies products for any such unintended or unauthorized application, Buyer shall indemnify and hold SensoNor Technologies and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable legal fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SensoNor Technologies was negligent regarding the design or manufacture of the part.

Sensonor Technologies AS

Phone: +47 3303 5000 - Fax: +47 3303 5005 sales@sensonor.no www.sensonor.com