

TECHNICAL NOTE

Sensonor AS

Distribution	Prepared by		Document No	
RH, SNO, HAS, HEM	Marius Horntvedt		TN19070801	
	Sign	Date	Page	1
	MHo	08.07.2019	of	7
Document Title				
STIM300 Random Vibration "High Performance Aircraft"				

Table of Contents

1	Summary	. 1
2	Objective	. 2
3	Method	. 2
4	Test setup	. 4
	4.1 Test equipment	. 4
5	Material	. 5
6	Results	. 5
	6.1 Gyro results	. 5
	6.2 Accelerometer results	. 6
	6.3 Discussion of results	. 7
7	Conclusion	.7

1 Summary

The Vibration Rectification Coefficient (VRC) of STIM300 (8 units, 10g version) has been characterized using random vibrations in accordance to MIL-STD 810E 514.4-8 "High Performance Aircraft". The results are in accordance to the STIM300 datasheet TS1524 rev.24.

Measure the vibration rectification coefficient (VRC) of STIM300 gyro and accelerometers when exposed to random vibrations.

3 Method

Perform the following sequence is performed on 8 STIM300:

- Mount STIM300 on shaker-table, oriented so that acceleration (Grms=14.83) will be applied in X, Y, Z-direction
- No vibration applied: 15min
- Vibration: 15min
- No vibration applied: 15min
- Vibration: 15min
- No vibration applied: 15min
- Calculate average of the individual test sections
- Calculate VRC according to equation 1

Figure 1: Random vibration spectrum: MIL-STD 810E 514.4-8 "High Performance Aircraft"

Figure 2: Spectrum during test

Figure 3: Example of random vibration test sequence (gyro)

Equation 1: Calculation of VRC

$$VRC = ABS \begin{bmatrix} \frac{(Avg2 - Avg1) + (Avg2 - Avg3) + (Avg4 - Avg3) + (Avg4 - Avg5)}{4} \\ g2_{rms} \end{bmatrix} [^{\circ}/h/g2_{rms}]$$

4 Test setup

4.1 Test equipment

Equipment	Description	SEN No
LDS V725	Shaker	420529
LDS DPA4	Shaker amplifier	420008
LDS Dactron Comet	Vibration control system	420719
Bruel & Kjær	Conditioning amplifier	420478
HP	PC	51671
Agilent E3631A	Power Supply	420568

5 Material

The following STIM300 -10g were measured:

- N25581707828426
- N25581647653616
- N25581647653599
- N25581647653622
- N25581710876797
- N25581707829519
- N25581710876769
- N25581710876772

6 Results

6.1 Gyro results

The gyros are sensitive to acceleration-forces in its z-direction:

- X- and Y-gyros have their highest sensitivity to vibrations in z-direction
- Z-gyro has its highest sensitivity to vibrations in y-direction

Figure 4: VRC results of STIM300 gyro

Direction of vibration	X-Gyro	Y-Gyro	Z-Gyro
	avg VRC [°/h/g²rms]	avg VRC [°/h/g²rms]	avg VRC [°/h/g ² rms]
Х	0.001	0.001	0.002
Y	0.002	0.002	0.059
Z	0.066	0.047	0.002

Table 1: Gyro VRC results

6.2 Accelerometer results

The accelerometers have their highest sensitivity to acceleration-forces in their own direction as shown in figure 5.

Figure 5: VRC results of STIM300 Accelerometer

Direction of vibration	X-Acc	Y-Acc	Z-Acc
	avg VRC mg/g ² rms]	avg VRC mg/g ² rms]	avg VRC mg/g ² rms]
Х	0.279	0.002	0.003
Y	0.007	1.273	0.003
Z	0.004	0.002	0.347

Table 2: Acc VRC results

6.3 Discussion of results

Applying the "High Performance Aircraft" random vibration profile resulted in a VRC of 0.066°/h/g²rms. This profile is dominated by frequencies in the range 300-1000Hz range. The results match well with the VRC (@5g sinusoidal) specification in STIM300 datasheet TS1524 rev.24 (0.06°/h/g²rms @ 1000Hz. The VRC increases with increasing frequency and is constant in the g-range of 5-20g).

As indicated the accelerometers have their larges VRC in their own direction, ref. figure 5. The VRC of 1.27 mg/g² rms match well with the VRC specification in the datasheet, 0.5mg/g² rms @ 1000Hz and 1.4 mg/g² rms @ 2000Hz (@ 10g sinusoidal).

7 Conclusion

The results are in accordance to the expectation based on the datasheet TS1524 rev.24. Measurements show that the gyro sensing element is sensitive to vibrations only in its z-direction, ref. table 1. As a result of how the three gyros are mounted in the IMU, all gyros will be insensitive to vibrations in the x-direction of the IMU.

The accelerometers have their largest VRC to acceleration-forces in their own direction, ref table 2.