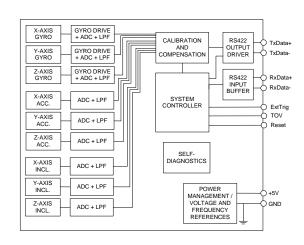
STIM318e

Inertial Measurement Unit


Other gyro ranges

FEATURES:

- Miniature package
- Low noise
- Low bias instability
- Excellent performance in vibration and shock environments
- 9 axes offered in same package
 - Electronically calibrated axis alignment
- Gyros based on Safran ButterflyGyro[™]
 - Single-crystal silicon technology
 - No intrinsic wear-out effects
- High stability accelerometers and inclinometers
- Insensitive to magnetic fields
- Full EMI compliance
- Digital interface, RS422
- Fully configurable
- Continuous self-diagnostics
- RoHS compatible

BLOCK DIAGRAM:

1 PURPOSE OF DOCUMENT

This document specifies the gyro performance of other gyro ranges than the 400°/s range covered by the STIM318 Datasheet.

Numbering of sections, tables, figures and equations from page 3 refers directly to the corresponding numbering in the STIM318 Datasheet.

2 TABLE OF CONTENTS

DO	CUMENT HISTORY
1	PURPOSE OF DOCUMENT
2	TABLE OF CONTENTS
3	REFERENCE DOCUMENT
4	GYRO RANGES
5	ABBREVIATIONS USED IN DOCUMENT
5	SPECIFICATIONS
	5.3.3 Configuration datagram
	BASIC OPERATION
	7.4.2.2.2 Gyro output unit = Angular Rate
	7.4.2.2.3 Gyro output unit = Incremental Angle
	7.4.2.2.5 Gyro output unit = Integrated Angle
12	CONFIGURATION / ORDERING INFORMATIONCONFIGURATION / ORDERING INFORMATION

3 REFERENCE DOCUMENT

o STIM318 Datasheet, TS1657 rev.9 and later

4 GYRO RANGES

Table 4-1: Gyro ranges not covered by STIM318 Datasheet

1200°/s	
2000°/s	

5 ABBREVIATIONS USED IN DOCUMENT

Table 5-1: Abbreviations

ABBREVIATION	FULL NAME
TBD	To Be Defined

5 SPECIFICATIONS

Table 6-1: Operating conditions

Table 6 1: Operating Conditions										
Parameter	Gyro range	Min	Nom	Max	Unit	Note				
INPUT RANGE, ANGULAR RATE	1200°/s		±1200		°/s					
	2000°/s		±2000		°/s					

Table 5-3: Functional specifications, gyros

Gyro range	Full Scale (FS) ^{1,2}	Resolution	Non-Linearity @800°/s	Non-Linearity @FS	Bias Instability	Angular Random Walk
1200°/s	±1200°/s	0.66°/h	100ppm	TBD	0.3°/h	Ref.datasheet
2000°/s	±2000°/s	1.10°/h	100ppm	TBD	0.4°/h	0.20°/√hr

Notes:

Note 1: Output is monotonous and will saturate at maximum value according to data-format, at 28% above range

Note 2: Overload-bit will be set in STATUS-byte at 20% above range

5.3.3 Configuration datagram

Table 6-14: Specification of the Configuration datagram

									High nibble: Gyro range, x-axis
	0	0	1	0	х	Х	Х	х	- 1200°/s
15	0	1	0	0	х	Х	Х	х	- 2000°/s
15									Low nibble: Gyro range, y-axis
	х	Х	х	х	0	0	1	0	- 1200°/s
	х	Χ	х	х	0	1	0	0	- 2000°/s
									High nibble: Gyro range, z-axis
16	0	0	1	0	Х	Х	Х	Х	- 1200°/s
	0	1	0	0	Χ	Х	Х	Х	- 2000°/s

7 BASIC OPERATION

7.4.2.2.2 Gyro output unit = Angular Rate

In the case of STIM318 being configured to output angular rate, Equation 1 shows how to convert to [°/s]. Note that the output data is represented as two's complement.

Equation 1: Converting output to [°/s]:

Gyro range	Conversion:
1200°/s	Output $[^{\circ}/s] = \frac{(AR_1) \cdot 2^{16} + (AR_2) \cdot 2^8 + (AR_3) - (AR_{b23}) \cdot 2^{24}}{7}$
	5461
2000°/s	$Output[^{\circ}/s] = \frac{(AR_1) \cdot 2^{16} + (AR_2) \cdot 2^8 + (AR_3) - (AR_{b23}) \cdot 2^{24}}{20077}$
	3277

where AR₁ is the most significant byte of the 24bit output

AR₂ is the middle byte of the 24bit output

AR₃ is the least significant byte of the 24bit output

AR_{b23} is the most significant bit of AR₁

Figure 7-7: Not valid

7.4.2.2.3 Gyro output unit = Incremental Angle

In the case of STIM318 being configured to output incremental angle per sample, the equations for conversion to [°/sample] can be found in Equation 2. Note that the output data is represented as two's complement.

Equation 2: Converting output to [°/sample]

Gyro range	Conversion:
1200°/s	Output $[\circ/sample] = \frac{(IA_1) \cdot 2^{16} + (IA_2) \cdot 2^8 + (IA_3) - (IA_{b23}) \cdot 2^{24}}{(00051)}$
	1 099051
2000°/s	Output $[\circ / sample] = \frac{(IA_1) \cdot 2^{16} + (IA_2) \cdot 2^8 + (IA_3) - (IA_{b23}) \cdot 2^{24}}{410420}$
	419430

where IA₁ is the most significant byte of the 24bit output

IA2 is the middle byte of the 24bit output

IA₃ is the least significant byte of the 24bit output

IA_{b23} is the most significant bit of IA₁

Figure 7-8: Not valid

7.4.2.2.5 Gyro output unit = Integrated Angle

In the case of STIM318 being configured to output integrated angle, the transmitted data will be the continuously integrated angle since power-on or reset. The integrated angle takes values in the interval:

±1200°/s: [-12°, 12°> ±2000°/s: [-20°, 20°>

and will naturally wrap-around with no error-message indication in the Status-byte.

Conversion to [°] is the same as for incremental angle and is described in Equation 2.

12 CONFIGURATION / ORDERING INFORMATIONCONFIGURATION / ORDERING INFORMATION

The STIM318 will be delivered according to the configuration code as shown below. All configuration parameters can be changed later in Service Mode, ref. section 8.4.3. A full list of configurable parameters can be found in Table 6-9.

Configuration parameters in **bold** letters show the standard option.

Range			Measurement							utput/RS	422
Prod_ID	-	Sample rate	Filter band- width	Gyro output unit	Acc. output unit	Incl. output unit	Gyro g-comp		Datagram	Bit-rate	Termination

Range STIM318e								
Prod_ID	Gyro	Acc						
85084	1200°/s	10g						
85085	1200°/s	30g						
85089	1200°/s	80g						

Sample rate:
0 = 125 samples/s
1 = 250 samples/s
2 = 500 samples/s
3 = 1000 samples/s
4 = 2000 samples/s
5 = External Trigger

Filter bandwidth:	
0 = 16Hz	
1 = 33Hz	
2 = 66Hz	
3 = 131Hz	
4 = 262Hz	

Gyro output unit:
0 = Angular Rate [°/s]
1 = Incremental Angle [°/sample]
2 = Average Angular Rate [°/s]
3 = Integrated Angle [°]
8 = Angular Rate [°/s] – delayed
9 = Incremental Angle [°/sample] - delayed
a = Average Angular Rate [°/s] – delayed
b = Integrated Angle [°] - delayed

Acc. output unit:
0 = Acceleration [g]
1 = Incremental Velocity [m/s/sample]
2 = Average Acceleration [g]
3 = Integrated Velocity [gs]

Incl. output unit:
0 = Acceleration [g]
1 = Incremental Velocity [m/s/sample]
2 = Average Acceleration [g]
3 = Integrated Velocity [gs]

Gyro g-comp				
	Bias		Scale-factor	
	Source	0.01Hz- filter	Source	0.01Hz- filter
0	OFF	-	OFF	-
1 ¹⁾	OFF	-	ACC	OFF
2	OFF	-	ACC	ON
3 ¹⁾	ACC	OFF	OFF	-
4	ACC	ON	OFF	-
71)	ACC	OFF	ACC	OFF
8 ¹⁾	ACC	ON	ACC	OFF
b	ACC	ON	ACC	ON

Datagram					
	Included data				
	Rate	Acceleration	Inclination	Temperature	
0	YES	NO	NO	NO	
1	YES	YES	NO	NO	
2	YES	NO	YES	NO	
3	YES	YES	YES	NO	
4	YES	NO	NO	YES	
5	YES	YES	NO	YES	
6	YES	NO	YES	YES	
7	YES	YES	YES	YES	

Bit-rate:
0 = 374400 bits/s
1 = 460800 bits/s
2 = 921600 bits/s
3 = 1843200 bits/s ²⁺³⁾
f = User-defined 3)

Termination			
	Line	Datagram	
0	OFF	None	
1	ON	None	
2	OFF	<cr><lf></lf></cr>	
3	ON	<cr><lf></lf></cr>	

RS422 data configuration			
#Start bit	1		
#Data bits	8		
#Stop bits	1 ⁴⁾		
Parity	None ⁴⁾		

- 1) Delayed gyro output unit should be selected with this option
- 2) USB-based evaluation kit works at bit-rates < 1.5Mbit/s + 2Mbit/s and 3Mbits/s
- 3) Bit-rate must be specified. See section 9.5 for limitations
- 4) Configuration can be changed in SERVICEMODE. See section 9.5

POWERED BY TRUST

Information furnished by Safran is believed to be accurate and reliable. However, no responsibility is assumed by Safran for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Safran reserves the right to make changes without further notice to any products herein. Safran makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Safran assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. No license is granted by implication or otherwise under any patent or patent rights of Safran. Trademarks and registered trademarks are the property of their respective owners. Safran products are not intended for any application in which the failure of the Safran product could create a situation where personal injury or death may occur. Should Buyer purchase or use Safran products for any such unintended or unauthorized application, Buyer shall indemnify and hold Safran and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and respenses, and respense and res

Sensonor AS

sales@sensonor.com

www.sensonor.com

